3 resultados para Poultney, Evan.
em Brock University, Canada
Resumo:
GABA (y-amino butyric acid) is a non-protein amino acid synthesized through the a-decarboxylation of L-glutamate. This reaction is catalyzed by L-glutamate decarboxylase (EC 4.1.1.15), a cytosolic Ca2+/calmodulin-stimulated enzyme. The purpose of this study is to determine whether or not GABA accumulation is associated with the hypersensitive response of isolated Asparagus sprengeri mesophyll cells. The addition of 25 J.lM mastoparan, a G protein activator, to suspensions of isolated asparagus mesophyll cells significantly increased GABA synthesis and cell death. Cell death was assessed using Evan's blue dye and fluorescein diacetate tests for cell viability. In addition, mastoparan stimulated pH-dependent alkalinization of the external medium, and a rapid and large 02 consumption followed by a loss of photosynthetic activity. The rate of 02 consumption and the net decrease in 02 in the dark was enhanced by light. The inactive mastoparan analogue Mas17 was ineffective in stimulating GABA accumulation, medium alkalinization, 02 uptake and cell death. Accumulation of H202 in response tomastoparan was not detected, however, mastoparan caused the cell-dependent degradation of added H202. The pH dependence of mastoparan-stimulated alkalinization suggests cellular electrolyte leakage, while the consumption of 02 corresponds to the oxidative burst in which 02 at the cell surface is reduced to form various active oxygen species. The results are indicative of the "hypersensitive response" of plants to pathogen attack, namely, the death of cells in the locality of pathogen invasion. The data are compatible with a model in which mastoparan triggers G protein activity, subsequent intracellular signal transduction pathway/s, and the hypersensitive response. It is postulated that the physiological elicitation of the hypersensitive response involves G protein signal transduction. The synthesis of GABA during the hypersensitive response has not been documented previously; however the role/s of GABA synthesis in the hypersensitive response, if any, remain unclear.
Resumo:
The study of peers as an influence on sport participation has received minimal exploration. The purpose of this cross-sectional study was to determine how peer created motivational climates (task-involved and ego-involved) impact positive and negative affective states of intramural sport participants post-participation. Three hundred and fifteen intramural sport participants (N=315) at a Canadian university completed a questionnaire after participating in their intramural sport. Hierarchical regression analyses and MANCOVAs were used to examine the effects of peer motivational climates on positive and negative affect. Results revealed that task-involved peer climates are more conducive of positive affective states post-participation whereas ego-involved climates result in lesser positive affective states and more negative affective states. Teams that promote improvement and effort instead of intra-team competition and conflict will have more positive recreational sport experiences. Future research should explore other psychological outcomes that can result from peer created motivational climates in recreational sport team settings.
Resumo:
From American Society of Civil Engineers.