10 resultados para Plants, Cultivated.

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grape (Vitis spp.) is a culturally and economically important crop plant that has been cultivated for thousands of years, primarily for the production of wine. Grape berries accumulate a myriad of phenylpropanoid secondary metabolites, many of which are glucosylated in plantae More than 90 O-glucosyltransferases have been cloned and biochemically characterized from plants, only two of which have been isolated from Vitis spp. The world-wide economic importance of grapes as a crop plant, the human health benefits associated with increased consumption of grape-derived metabolites, the biological relevance of glucosylation, and the lack of information about Vitis glucosyltransferases has inspired the identification, cloning and biochemical characterization of five novel "family 1" O-glucosyltransferases from Concord grape (Vitis labrusca cv. Concord). Protein purification and associated protein sequencIng led to the molecular cloning of UDP-glucose: resveratrollhydroxycinnamic acid O-glucosyltransferase (VLRSGT) from Vitis labrusca berry mesocarp tissue. In addition to being the first glucosyltransferase which accepts trans-resveratrol as a substrate to be characterized in vitro, the recombinant VLRSGT preferentially produces the glucose esters of hydroxycinnamic acids at pH 6.0, and the glucosides of trans-resveratrol and flavonols at 'pH 9.0; the first demonstration of pH-dependent bifunctional glucosylation for this class of enzymes. Gene expression and metabolite profiling support a role for this enzyme in the bifuncitonal glucosylation ofstilbenes and hydroxycinnamic acids in plantae A homology-based approach to cloning was used to identify three enzymes from the Vitis vinifera TIGR grape gene index which had high levels of protein sequence iii identity to previously characterized UDP-glucose: anthocyanin 5-0-glucosyltransferases. Molecular cloning and biochemical characterization demonstrated that these enzymes (rVLOGTl, rVLOGT2, rVLOGT3) glucosylate the 7-0-position of flavonols and the xenobiotic 2,4,5-trichlorophenol (TCP), but not anthocyanins. Variable gene expression throughout grape berry development and enzyme assays with native grape berry protein are consistent with a role for these enzymes in the glucosylation of flavonols; while the broad substrate specificity, the ability of these enzymes to glucosylate TCP and expression of these genes in tissues which are subject to pathogen attack (berry, flower, bud) is consistent with a role for these genes in the plant defense response. Additionally, the Vitis labrusca UDP-glucose: flavonoid 3-0-glucosyltransferase (VL3GT) was identified, cloned and characterized. VL3GT has 96 % protein sequence identity to the previously characterized Vitis vinifera flavonoid 3-0-glucosyltransferase (VV3GT); and glucosylates the 3-0-position of anthocyanidins and flavonols in vitro. Despite high levels of protein sequence identity, VL3GT has distinct biochemical characteristics (as compared to VV3GT), including a preference for B-ring methylated flavonoids and the inability to use UDP-galactose as a donor substrate. RT-PCR analysis of VL3GT gene expression and enzyme assays with native grape protein is consistent with an in planta role for this enzyme in the glucosylation of anthocyanidins,but not flavonols. These studies reveal the power of combining several biochemistry- and molecular biology-based tools to identify, clone, biochemically characterize and elucidate the in planta function of several biologically relevant O-glucosyltransferases from Vitis spp.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Young soybean plants (Glycine ~. L. cultivar Harosoy '63), grown under controlled conditions, were exposed to gamma radiation on a single occasion. One hour following exposure to 3,750 rads, the mature trifoliate leaf of the soybean plant was isolated in a closed system and permitted to photoassimilate approximately 1-5 pCi of 14C02 for 15 minutes. After an additional 45 minute-period, the plant was sacrificed and the magnitude of translocation and distribution pattern of 14C determined. In the non-irradiated plants 18~ of the total 14C recovered was outside the fed leaf blades and of this translocated 14c, 28~ was above the node of the fed leaf, 38~ in the stem below the node, 28~ in the roots and 7~ in the petiole. As well, in the irradiated plants, a smaller per cent (6~) of the total 14 C recovered was exported out of the source leaf blades. Of this translocated 14c , a smaller per cent (20~) was found in the apical region above the node of the source leaf and a higher per cent (45~) was recovered from the stem below the node and in the petiole (11~). The per cent of exported 14 C recovered from the root was unaffected by the radiation. Replacement of the shoot apex with 20 ppm IAA immediately following irradiation, only J partially increased the magnitude of translocation but did completely restore the pattern of distribution to that observed in the non-irradiated plants. From supplementary studies showing a radiationinduced reduction of photosynthetic rates in the source leaf and a reduction of the cumulative stem and leaf lengths in the apical sink region, the observed effects of radiation on the translocation process have been correlated to damage incurred by the source and sink regions. These data suggest that the reduction in the magnitude of translocation is the result of damage to both the source and sink regions rather than the phloem conducting tissue itself, whereas the change in the pattern of translocation is probably the result of a reduced rate of 14C-assimilate movement caused by a radiation-induced decrease of sink metabolism, especially the decrease in the metabolism of the apical sink.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since previous investigations have shown that low levels of ionizing radiation can induce a reduction in the rates of apparent photosynthesis and in the magnitude of photoassimilated l4C exported out of a leaf, the present studies were designed and conducted to determine the relationship, if any, between the radiation effects on these two physiological processes. The experiments were particularly designed to determine if the radiation-induced reduction in export is the result of the reduction in photosynthesis and hence availability of materials for translocation or the result of a reduction in the amount of energy available for the vein loading process. This study has shown that the radiation-induced reduction in l4C export out of a leaf is likely related to a loss of energy available for the vein loading process rather than a reduction in the supply of materials available for export due to reduced C02 uptake. The process of photophosphorylation was shown to be reduced by exposure to radiation to an extent similar to the reduction in the export of l4C which was also observed. Both of these processes returned to their pre-irradiation rates 120 minutes following radiatruon exposure. The rate of photosynthetic C02 uptake was also reduced by radiation exposur~ howeve~ this process did not return to the control level nor was the extent of reduction as large as observed for photophosphorylation and photoassimilate export. The observed relationship between the reductions of export and photoph~sphorylation pointed to the utilization of photosynthetically produced ATP in the vein loading process. The radiation-induced reduction in the export of l4C was observed at the highest light intensity used in this study which would also imply the involvement of the photophosphorylation process as an energy seurce for vein loading. The lack of radiation-induced reduction in export at low light intensities was interpreted as being due to the utilization of respiratory derived ATP, a process known to be insensitive to radiation at the levels used in this study, as the energy source for the vein loading process. Studies using plants not stressed by radiation showed that there was an increase in export of 14C with higher light intensities. In summary, the data has been interpreted as showing that at high light intensities the ATP, produced by photophosphorylation, is available for use in the vein loading process. The site of ATP utilization could not be determined from the data obtained in this study but possible sites have been indicated from the work done by other physiologists and are discussed in the thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Involvement of ethylene in the etiology of tomato plants (Lycopersicon esculentum) infected with the root-knot nematode (Meloidogyne incognita) was investigated. Endogenous root concentrations of ethylene were not significantly different in uninfected resistant var. Anahu and susceptible var. Vendor plants. Exposure of resistant plants to high doses of infectious nematode larvae did not affect root ethylene concentrations during the subsequent 30 day period. The possibility that ethylene may be involved in the mechanism of resistance is therefore not supported by these experiments. In no experiments did ethylene concentrations in roots of susceptible plants increase significantly subsequent to ~ incognita infestation. This result is not consistent with the hypothesis in the literature which suggests that increased ethylene production accompanies gall formation. Growth of susceptible tomato plants was affected by ~ incognita infestation such that root weights increased (due to galling), stem heights decreased and top weights increased. The possibility that alterations in stem growth resulted from increased production of 'stress' ethylene is discussed. Growth of resistant plants was unaffected by exposure to high doses of ~ incognita and galls were never detected on the roots of these plants. Root ethane concentrations generally varied in parallel with root ethylene concentrations although ethane concentrations were without exception greater. In 4 of 6 experiments conducted ethane/ethylene ratios increased significantly with time. These results are discussed in the light of published data on the relationship between ethane and ethylene synthesis. The term infested is used throughout this thesis in reference to plants whose root systems had been exposed to nematodes and does not distinguish between the susceptible and resistant response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soybean (Glycine ~ (L.) Merr. cv. Harosoy 63) plants inoculated with Rhizobium japonicum were grown in vermiculite in the presence or absence of nitrate fertilization for up to 6 weeks after planting. Overall growth of nodulated plants was enhanced in the presence of nitrate fertilization, while the extent of nodule development was reduced. Although the number of nodules was not affected by nitrate fertilization when plants were grown at a light intensity limiting for photosynthesis, at light intensities approaching or exceeding the light saturation point for photosynthesis, nitrate fertilization resulted in at least a 30% reduction in nodule numbers. The mature, first trifoliate leaf of 21 day old plants was allowed to photoassimi1ate 14C02. One hour after·· the initial exposure to 14C02, the , plants were harvested and the 14C radioactivity was determined in the 80% ethanol-soluble fraction: in. o:rider to assess· "the extent of photoassimilate export and the pattern of distribution of exported 14C. The magnitude of 14C export was not affected by the presence of nitrate fertilization. However, there was a significant effect on the distribution pattern, particularly with regard to the partitioning of 14C-photosynthate between the nodules and the root tissue. In the presence of nitrate fertilization, less than 6% of the exported 14C photosynthate was recovered from the nodules, with much larger amounts (approximately 37%) being recovered from the root tissue. In the absence of nitrate fertilization, recovery of exported 14C-photosynthate from the nodules (19 to 27%) was approximately equal to that from the root tissue (24 to 33%). By initiating- or terminating the applications of nitrate at 14 days of age, it was determined that the period from day 14 to day 21 after planting was particularly significant for the development of nodules initiated earlier. Addition of nitrate fertilization at this time inhibited further nodule development while stimulating plant growth, whereas removal of nitrate fertilization stimulated nodule development. The results obtained are consistent with the hypothesis that nodule development is inhibited by nitrate fertilization through a reduction in the availability of photosynthate to the nodules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A total of 251 bacterial isolates were isolated from blotched mushroom samples obtained from various mushroom farms in Canada. Out of 251 stored isolates, 170 isolates were tested for pathogenicity on Agaricus bisporus through mushroom rapid pitting test with three distinct pathotypes observed: dark brown, brovm and yellow/yellow-brown blotch. Phenotypic analysis of 83 isolates showed two distinct proteinase K resistant peptide profiles. Profile group A isolates exhibited peptides with masses of 45, 18, 16 and 14 kDa and fiirther biochemical tests identified them as Pseudomonasfluorescens III and V. Profile group B isolates lacked the 16-kDa peptide and the blotch causing bacterial isolates of this group was identified as Serratia liquefaciens and Cedecea davisae. Comparative genetic analysis using Amplified Fragment Length Polymorphism (AFLP) on 50 Pseudomonas sp. isolates (Group A) showed that various blotch symptoms were caused by isolates distributed throughout the Pseudomonas sp. clusters with the exception of the Pseudomonas tolaasii group and one non-pathogenic Pseudomonas fluorescens cluster. These results show that seven distinct Pseudomonas sp. genotypes (genetic clusters) have the ability to cause various symptoms of blotch and that AFLP can discriminate blotch causing from non-blotch causing Pseudomonasfluorescens. Therefore, a complex of diverse bacterial organisms causes bacterial blotch disease

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect that plants {Typha latifolia) as well as root-bed medium physical and chemical characteristics have on the treatment of primary treated domestic wastewater within a vertical flow constructed wetland system was investigated. Five sets of cells, with two cells in each set, were used. Each cell was made of concrete and measured 1 .0 m X 1 .0 m and was 1.3 m deep. Four different root-bed media were tested : Queenston Shale, Fonthill Sand, Niagara Shale and a Michigan Sand. Four of the sets contained plants and a single type of root-bed medium. The influence of plants was tested by operating a Queenston Shale set without plants. Due to budget constraints no replicates were constructed. All of the sets were operated independently and identically for twenty-eight months. Twelve months of data are presented here, collected after 16 months of continuous operation. Root-bed medium type did not influence BOD5 removal. All of the sets consistently met Ontario Ministry of Environment (MOE) requirements (<25 mg/L) for BOD5 throughout the year. The 12 month average BOD5 concentration from all sets with plants was below 2.36 mg/L. All of the sets were within MOE discharge requirements (< 25 mg/L) for suspended solids with set effluent concentrations ranging from 1.53 to 14.80 mg/L. The Queenston Shale and Fonthill Sand media removed the most suspended solids while the Niagara Shale set produced suspended solids. The set containing Fonthill Sand was the only series to meet MOE discharge requirements (< Img/L) for total phosphorus year-round with a twelve month mean effluent concentration of 0.23 mg/L. Year-round all of the root-bed media were well below MOE discharge requirements (< 20mg/L in winter and < 10 mg/L in sumnner) for ammonium. The Queenston Shale and Fonthill Sand sets removed the most total nitrogen. Plants had no effect on total nitrogen removal, but did influence how nitrogen was cycled within the system. Plants increased the removal of suspended solids by 14%, BOD5 by 10% and total phosphorus by 22%. Plants also increased the amount of dissolved oxygen that entered the system. During the plant growing season removal of total phosphorus was better in all sets with plants regardless of media type. The sets containing Queenston Shale and Fonthill Sand media achieved the best results and plants in the Queenston Shale set increased treatment efficiency for every parameter except nitrogen. Vertical flow wetland sewage treatment systems can be designed and built to consistently meet MOE discharge requirements year-round for BOD5, suspended solids, total phosphorus and ammonium. This system Is generally superior to the free water systems and sub-surface horizontal flow systems in cold climate situations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ambient (03) ozone concentrations were compared to ozone damage on milkweed plants to determine if there was a correlation. Eight survey sites of at least 100 plants each were located within 5 kilometers of Air Quality Index (AQI) stations in southern Ontario. Sites were visited nine times from June-September (2007) and milkweed leaves from 75 plants were assessed using methods pioneered in the United States. Ambient 0 3 results were calculated into SUM65, seasonal cumulative 0 3, and total 03. The 0 3 exposure indices SUM65 and cumulative 0 3 were tested statistically to determine which index is biologically relevant to milkweed as an 0 3 damage indicator species. The milkweed damage indices were incidence of leaves damaged per plant, incidence of plants damaged per site, and total 0 3• The incidence of plants injured per site was the best damage parameter with an F(1,28)=17.37, p=0.0003 for SUM65 and F(1,28)=7.5, p=O.0106 for cumulative 03 .. Milkweed plants showed quantifiable ozone damage with minimal spatial differences in damage and thus have potential use as a biomonitor species in southern Ontario.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agaricus bisporus is the most commonly cultivated mushroom in North America and has a great economic value. Green mould is a serious disease of A. bisporus and causes major reductions in mushroom crop production. The causative agent of green mould disease in North America was identified as Trichoderma aggressivum f. aggressivum. Variations in the disease resistance have been shown in the different commercial mushroom strains. The purpose of this study is to continue investigations of the interactions between T. aggressivum and A. bisporus during the development of green mould disease. The main focus of the research was to study the roles of cell wall degrading enzymes in green mould disease resistance and pathogenesis. First, we tried to isolate and sequence the N-acetylglucosaminidase from A. bisporus to understand the defensive mechanism of mushroom against the disease. However, the lack of genomic and proteomic information of A. bisporus limited our efforts. Next, T. aggressivum cell wall degrading enzymes that are thought to attack Agaricus and mediate the disease development were examined. The three cell wall degrading enzymes genes, encoding endochitinase (ech42), glucanase (fJ-1,3 glucanase) and protease (prb 1), were isolated and sequenced from T. aggressivum f. aggressivum. The sequence data showed significant homology with the corresponding genes from other fungi including Trichoderma species. The transcription levels of the three T. aggressivum cell wall degrading enzymes were studied during the in vitro co-cultivation with A. bisporus using R T -qPCR. The transcription levels of the three genes were significantly upregulated compared to the solitary culture levels but were upregulated to a lesser extent in co-cultivation with a resistant strain of A. bisporus than with a sensitive strain. An Agrobacterium tumefaciens transformation system was developed for T. aggressivum and was used to transform three silencing plasmids to construct three new T. aggressivum phenotypes, each with a silenced cell wall degrading enzyme. The silencing efficiency was determined by RT-qPCR during the individual in vitro cocultivation of each of the new phenotypes with A. bisporus. The results showed that the expression of the three enzymes was significantly decreased during the in vitro cocultivation when compared with the wild type. The phenotypes were co-cultivated with A. bisporus on compost with monitoring the green mould disease progression. The data indicated that prbi and ech42 genes is more important in disease progression than the p- 1,3 glucanase gene. Finally, the present study emphasises the role of the three cell wall degrading enzymes in green mould disease infection and may provide a promising tool for disease management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trichoderma aggressivum f. aggressivum is a filamentous soil fungus. Green mold disease of commercial mushrooms caused by this species in North America has resulted in millions of dollars in lost revenue within the mushroom growing industry. Research on the molecular level of T aggressivum have jus t begun with the goal of understanding the functions of each gene and protein, and their expression control. Protein targeting has not been well studied in this species yet. Therefore, the intent of this study was to test the protein localization and production levels in T aggressivum with green fluorescent protein (GFP) with an intron and tagged with either nuclear localization signal (NLS) or an endoplasmic reticulum retention signal (KDEL). Two GFP constructs (with and without the intron) were used as controls in this study. All four constructs were successfully transferred into T aggressivum and all modified strains showed similar growth characteristics as the wild type non-transformed isolate. GFP expression was detected from all modified T aggressivum with confocal microscopy and the expression was similar in all four strains. The intron tested in this study had no or very minor effects as GFP expression was similar with or without it. The GFP signal increased over a 5 day period for all transformants, while the GFP to total protein ratio decreased over the same period for all transformants. The GFP-KDEL transformant showed similar protein expression level and localization as did the control transformant lacking the KDEL retention signal. The GFP-NLS transformant similarly failed to localize GFP into nucleus as fluorescence with this strain was virtually identical to the GFP transformant lacking the NLS. Thus, future research is required to find effective localization signals for T aggressivum.