4 resultados para Physiological responses
em Brock University, Canada
Resumo:
Previous research has demonstrated superior learning by participants presented with augmented task information retroactively versus proactively (Patterson & Lee, 2008; 2010). Theoretical explanations of these findings are related to the cognitive effort invested by participants during motor skill acquisition. The present study extended previous research by utilizing the physiological index, power spectral analysis of heart rate variability, previously shown to be sensitive to the degree of cognitive effort invested during the performance of a motor task (e.g., increase cognitive effort results in increased LF/HF ratio). Participants were required to learn 18 different key-pressing sequences. As expected, the proactive condition demonstrated superior RS during acquisition, with the retroactive condition demonstrating superior RS during retention. Measures of LF/HF ratio indicated the retroactive participants were investing significantly less cognitive effort in the retention period compared to the proactive participants (p< .05) as a function of learning.
Resumo:
Low levels of ionizing radiation induce two translocation responses in soybean: a reduction in photoassimilate export from leaves and a change in the distribution pattern of exported photoassimilate within the plant. In this investigation these responses have been further studied specifically to ascertain the site of radiation damage and to better understand the physiological responses observed. Experimentally the primary data was obtained from studies in which a mature trifoliate leaf of a young soybean plant (Glycine ~ L. cultivar Harosoy '63) is isolated in a closed transparent chamber and allowed to photoassimilate 14C02 for 15 minutes. This is followed by an additional 45 ~_il'1;ute period before the plant is sectl.o ne d an d 14 C-ra dl' oactl.v.l ty d eterml. ne d'l n a 11 parts. Such 14c data provides one with the magnitude and distribution pattern of translocation. Further analyses were conducted to determine the relative levels of the major photosynthetic products using the techniques of paper chromatography and autoradiography. Since differences between control and irradiated P 1 ants were not 0 b serve d l' n t h e par tl't"lo nlng 0 f 14 C between the 80% ethanol-soluble and -insoluble fractions 14 or in the relative amounts of C-products of photosynthesis, the reduction in export in irradiated plants is not likely due to reduced availability of translocatable materials. Data presented in this thesis shows that photoassimilate export was not affected by gamma radiation until a threshold dose between 2.0 and 3.0 krads was reached. It was also observed that radiation-induced damage to the export process was capable of recovery in a period of 1 to 2 hours provided high light intensity was supplied. In contrast, the distribution pattern was shown to be extremely radiosensitive with a low threshold dose between .25 and .49 krads. Although this process was also capable of recovery,lt" occurred much earlier and was followed by a secondary effect which lasted at least for the duration of the experiments. The data presented in this thesis is interpreted to suggest that the sites of radiation action for the two translocation responses are different. In regards to photoassimilate export, the site of action of ionizing radiation is the leaf, quite possibly the process of photophosphorylation which may provide energy directly for phloem loading and for membrane integrity of the phloem tissue* In regards to the pattern of distribution of exported photoassimilate, the site is likely the apical sink, possibly the result of changes of levels of endogenous hormones. By the selection of radiation exposure dose and time post-irradiation, it is possible to affect independently these two processes suggesting that each may be regulated independent of the other and involves a distinct site.
Resumo:
The current study sought to investigate the nature of empathic responding and emotion processing in persons who have experienced Mild Head Injury (MHI) and how this relationship between empathetic responding and head injury status may differ in those with higher psychopathic characteristics (i.e., subclinical psychopathy). One-hundred university students (36% reporting having a previous MHI) completed an Emotional Processing Task (EPT) using images of neutral and negative valence (IAPS, 2008) designed to evoke empathy; physiological responses were recorded. Additionally, participants completed measures of cognitive competence and various individual differences (empathy - QCAE; Reniers, 2011; Psychopathy - SRP-III, Williams, Paulhus & Hare, 2007) and demographics questionnaires. MHI was found to be associated with lower affective empathy and physiological reactivity (pulse rate) while viewing images irrespective of valence, reflecting a pattern of generalized underarousal. The empathic deficits observed correlated with the individual’s severity of injury such that the greater number of injury characteristics and symptoms endorsed by a subject, the more dampened the affective and cognitive empathy reactions to stimuli and the lower his/her physiological reactivity. Importantly, psychopathy interacted with head injury status such that the effects of psychopathy were significant only for individuals indicating a MHI. This group, i.e., MHI subjects who scored higher on psychopathy, displayed the greatest compromise in empathic responding. Interestingly, the Callous Affect component of psychopathy was found to account for the empathic and emotion processing deficits observed for individuals who report a MHI; in contrast, the Interpersonal Manipulation component emerged as a better predictor of empathic and emotion deficits observed in the No MHI group. These different patterns may indicate the involvement of different underlying processes in the manifestation of empathic deficits associated with head injury or subclinical psychopathy. It also highlights the importance of assessing for prior head injury in populations with higher psychopathic characteristics due to the possible combined/enhanced influences. The results of this study have important social implications for persons who have experienced a concussion or limited neural trauma since even subtle injury to the head may be sufficient to produce dampened emotion processing, thereby impacting one’s social interactions and engagement (i.e., at risk for social isolation or altered interpersonal success). Individuals who experience MHI in conjunction with certain personality profiles (e.g., higher psychopathic characteristics) may be particularly at risk for being less capable of empathic compassion and socially-acceptable pragmatics and, as a result, may not be responsive to another person’s emotional well-being.
Resumo:
Diatoms are renowned for their robust ability to perform NPQ (Non-Photochemical Quenching of chlorophyll fluorescence) as a dissipative response to heightened light stress on photosystem II, plausibly explaining their dominance over other algal groups in turbulent light environs. Their NPQ mechanism has been principally attributed to a xanthophyll cycle involving the lumenal pH regulated reversible de-epoxidation of diadinoxanthin. The principal goal of this dissertation is to reveal the physiological and physical origins and consequences of the NPQ response in diatoms during short-term transitions to excessive irradiation. The investigation involves diatom species from different originating light environs to highlight the diversity of diatom NPQ and to facilitate the detection of core mechanisms common among the diatoms as a group. A chiefly spectroscopic approach was used to investigate NPQ in diatom cells. Prime methodologies include: the real time monitoring of PSII excitation and de-excitation pathways via PAM fluorometry and pigment interconversion via transient absorbance measurements, the collection of cryogenic absorbance spectra to measure pigment energy levels, and the collection of cryogenic fluorescence spectra and room temperature picosecond time resolved fluorescence decay spectra to study excitation energy transfer and dissipation. Chemical inhibitors that target the trans-thylakoid pH gradient, the enzyme responsible for diadinoxanthin de-epoxidation, and photosynthetic electron flow were additionally used to experimentally manipulate the NPQ response. Multifaceted analyses of the NPQ responses from two previously un-photosynthetically characterised species, Nitzschia curvilineata and Navicula sp., were used to identify an excitation pressure relief ‘strategy’ for each species. Three key areas of NPQ were examined: (i) the NPQ activation/deactivation processes, (ii) how NPQ affects the collection, dissipation, and usage of absorbed light energy, and (iii) the interdependence of NPQ and photosynthetic electron flow. It was found that Nitzschia cells regulate excitation pressure via performing a high amplitude, reversible antenna based quenching which is dependent on the de-epoxidation of diadinoxanthin. In Navicula cells excitation pressure could be effectively regulated solely within the PSII reaction centre, whilst antenna based, diadinoxanthin de-epoxidation dependent quenching was implicated to be used as a supplemental, long-lasting source of excitation energy dissipation. These strategies for excitation balance were discussed in the context of resource partitioning under these species’ originating light climates. A more detailed investigation of the NPQ response in Nitzschia was used to develop a comprehensive model describing the mechanism for antenna centred non-photochemical quenching in this species. The experimental evidence was strongly supportive of a mechanism whereby: an acidic lumen triggers the diadinoxanthin de-epoxidation and protonation mediated aggregation of light harvesting complexes leading to the formation of quencher chlorophyll a-chlorophyll a dimers with short-lived excited states; quenching relaxes when a rise in lumen pH triggers the dispersal of light harvesting complex aggregates via deprotonation events and the input of diadinoxanthin. This model may also be applicable for describing antenna based NPQ in other diatom species.