21 resultados para Phillips, Roger: The 3000-mile garden
em Brock University, Canada
Hydraulic and fluvial geomorphological models for a bedrock channel reach of the Twenty Mile Creek /
Resumo:
Bedrock channels have been considered challenging geomorphic settings for the application of numerical models. Bedrock fluvial systems exhibit boundaries that are typically less mobile than alluvial systems, yet they are still dynamic systems with a high degree of spatial and temporal variability. To understand the variability of fluvial systems, numerical models have been developed to quantify flow magnitudes and patterns as the driving force for geomorphic change. Two types of numerical model were assessed for their efficacy in examining the bedrock channel system consisting of a high gradient portion of the Twenty Mile Creek in the Niagara Region of Ontario, Canada. A one-dimensional (1-D) flow model that utilizes energy equations, HEC RAS, was used to determine velocity distributions through the study reach for the mean annual flood (MAF), the 100-year return flood and the 1,000-year return flood. A two-dimensional (2-D) flow model that makes use of Navier-Stokes equations, RMA2, was created with the same objectives. The 2-D modeling effort was not successful due to the spatial complexity of the system (high slope and high variance). The successful 1 -D model runs were further extended using very high resolution geospatial interpolations inherent to the HEC RAS extension, HEC geoRAS. The modeled velocity data then formed the basis for the creation of a geomorphological analysis that focused upon large particles (boulders) and the forces needed to mobilize them. Several existing boulders were examined by collecting detailed measurements to derive three-dimensional physical models for the application of fluid and solid mechanics to predict movement in the study reach. An imaginary unit cuboid (1 metre by 1 metre by 1 metre) boulder was also envisioned to determine the general propensity for the movement of such a boulder through the bedrock system. The efforts and findings of this study provide a standardized means for the assessment of large particle movement in a bedrock fluvial system. Further efforts may expand upon this standardization by modeling differing boulder configurations (platy boulders, etc.) at a high level of resolution.
Resumo:
In light of the heavy reliance of the people of the Niagara Peninsula on the T\\'elve Mile Creek (TMC) watershed for recreational activities and for municipal and industrial uses ( e.g., drinking water, shipping and discharge of effluents), it was deemed prudent to assess the envirol1tnental health of the system by analysing the sediments total and exchangeable metal, and TPH contents. The MOEE has set guidelines with limits for the protection and management of aquatic sediments, and the sediments from the headwaters of the TMC have total metal and TPH (subset of O&G) contents well below the lower provincial limits. Areas of environmental concern where total metal contents in sediments, either individually or collectively, exceed the guideline, are the south side of Lake Gibson, the Old WeIland Canal, a segment of TMC just south of the QEW and Martindale Pond. The total metal content of sediments does not in all instances identify areas of biological concern. Instead, it has been found that the exchangeable metal fraction of sediments is a better indicator of metal availability and thus potential accumulation in organisms. In some instances, the exchangeable metal fraction agrees with the total metal fraction defining areas of environmental concern, but it does vary from site to site reflecting the natural variability of the ambient environment. Overall, the exchangeable metal fraction of sediments appears to be a better indicator of anthropogenic pollution and ecosystem impact. A histochemical study of Anodon.ta sp., Elliptio sp. and zebra mussels (Dreissena polyn'101pha) was done in conjunction with passive biomonitoring of zebra and quagga mussels (Dreissena bugensis) from the Twelve Mile Creek watershed and Lake 51. Clair (Jeanette's Creek, Chatham, Ontario). The highest concentrations of divalent metals such as Cu, Ni, Cd, and Zn, and trivalent Al appear to accumulate in gill and kidney tissues. Metal contents of organ tissues in Anodonta sp. vary with size class. Organ metal content varies among size classes, thus requiring consideration of size in biomonitoring studies. Shucked zebra and quagga mussel tissues, exhibited similar size class to Al content trends. In addition they reflected the Al content trends of top (approximately 10 cm) most sediments in the Twelve Mile Creek watershed. Quagga mussels appear to have higher Al concentrations than zebra mussels, thus suggesting that quagga mussels may be better passive biomonitors of AI. Cd content in zebra mussel tissues, seemed to increase with size class trends. This was not demonstrated in the quagga mussel tissues. This suggests that Cd may be regulated by quagga mussels and not by zebra mussels, and that zebra mussels may be better passivebiomonitors of Cd than are quagga mussels. Zebra mussel, quagga mussel, Anodonta sp., and Elliptio sp. were used in a two part, active (translocated) biomonitoring study of the Twelve Mile Creek watershed. There was no statistical difference in death rates between zebra and quagga mussels after 65 days of biomonitoring. However there does appear to be a difference of death rates between sites. Unfortunately the data base did not permit us to differentiate between sites. Relative to Port Colborne Harbour (Port Colborne, Ontario), the Twelve Mile Creek watershed appears to be elevated in bioavailable AI. An area near the terminus of the Twelve Mile Creek appears to be an area of environmental concern since mussels seemed to have accumulated relatively large concentrations of Cd, Zn, and Pb. In addition to possible metal loading from a nearby outfalls, or possible upstream outfalls, road salt runoff from storm sewers may have contributed to metal accumulation through cation exchanges processes. Similar trends in cumulative quagga mussel metal concentrations during the two time periods (65 and 159 days), suggest that quagga mussels may reach equilibrium within 65 days of translocation. Differences in bioaccumulated metal concentrations of the two dreissenid species demonstrate that active biomonitoring studies must use a variety of organisms to adequately assess the environmental situation of specific waterways and/or bodies.
Resumo:
The effec s of relative water level changes in Lake Ontario were detected in the ysical, chemical and biological characteristics of the sediments of the Fifteen, Sixteen and Twenty Mile Creek lagoonal complexes. Regional environmental changes have occurred resulting in the following sequence of sediments in the three lagoons and marsh. From the base up they are; (I) Till,(2) Pink Clay, (3) Bottom Sand, (4) Gyttja, (5) Orange Sandy Silt, (6) Brown Clay and (7) Gray Clay. The till was only encountered in the marsh and channel; however, it is presumed to occur throughout the entire area. The presence of diatoms and sponge spicules, the vertical and ongitudinal uniformity of the sediment and the stratigr ic position of the Pink Clay indicate that it has a glacial or post-glacial lacustrine origin. Overl ng the Pink Clay or Till is a clayey, silty sand to gravel. The downstream fining and unsorted nature of this material indicate that it has a fluvial/deltaic origin. Water levels began rising in the lagoon 3,250 years ago resulting in the deposition of the Gyttja, a brown, organic-rich silty clay probably deposited in a shallow, stagnant environment as shown by the presence of pyrite in the organic material and relatively high proportions of benthic diatoms and grass pollen. Increase in the rate of deposition of the Gyttja on Twenty Mile Creek and a decrease in the same unit on Sixteen Mile Creek is possibly the result of a capture of the Sixteen Mile Creek by the Twenty Mile Creek. The rise in lake level responsible for the onset and transgression of this III unit may have been produced by isostatic rebound; however, the deposition also corresponds closely to a drop in the level of Lake Huron and increased flow through the lower lakes. The o ange Sandy Silt, present only in the marsh, appears to be a buried soil horizon as shown by oxidized roots, and may be the upland equivalant to the Gyttja. Additional deepening resulted in the deposition of Brown Clay, a unit which only occurs at the lakeward end of the three lagoons. The decrease in grass pollen and the relatively high proportion of pelagic diatoms are evidence for this. The deepening may be the result of isostatic rebound; however, the onset of its deposition at 1640 years B.P. is synchronous in the three lagoons and corresponds to the end of the subAtlantic climatic episode. The effects of the climatic change in southern Ontario is uncertain. Average deposition rates of the Brown Clay are similar to those in the upper Gyttja on Sixteen Mile Creek; however, Twenty Mile Creek shows lower rates of the Brown Clay than those in the upper Gyttja. The Gray Clay covers the present bottom of the three lagoons and also occurs in the marsh It is inter1aminated wi sand in the channels. Increases in the rates of deposi ion, high concentrations of Ca and Zn, an Ambrosia rise, and an increase in bioturbation possibly due to the activities of the carp, indicate th this unit is a recent deposit resulting from the activities of man.
Resumo:
The relationships between vine water status, soil texture, and vine size were observed in four Niagara, Ontario Pinot noir vineyards in 2008 and 2009. The vineyards were divided into water status zones using geographic information systems (GIS) software to map the seasonal mean midday leaf water potential (,P), and dormant pruning shoot weights following the 2008 season. Fruit was harvested from all sentinel vines, bulked by water status zones and made into wine. Sensory analysis included a multidimensional sorting (MDS) task and descriptive analysis (DA) of the 2008 wines. Airborne multispectral images, with a spatial resolution of 38 cm, were captured four times in 2008 and three times in 2009, with the final flights around veraison. A semi-automatic process was developed to extract NDVI from the images, and a masking procedure was identified to create a vine-only NDVI image. 2008 and 2009 were cooler and wetter than mean years, and the range of water status zones was narrow. Yield per vine, vine size, anthocyanins and phenols were the least consistent variables. Divided by water status or vine size, there were no variables with differences between zones in all four vineyards in either year. Wines were not different between water status zones in any chemical analysis, and HPLC revealed that there were no differences in individual anthocyanins or phenolic compounds between water status zones within the vineyard sites. There were some notable correlations between vineyard and grape composition variables, and spatial trends were observed to be qualitatively related for many of the variables. The MDS task revealed that wines from each vineyard were more affected by random fermentation effects than water status effects. This was confirmed by the DA; there were no differences between wines from the water status zones within vineyard sites for any attribute. Remotely sensed NDVI (normalized difference vegetation index) correlated reasonably well with a number of grape composition variables, as well as soil type. Resampling to a lower spatial resolution did not appreciably affect the strength of correlations, and corresponded to the information contained in the masked images, while maintaining the range of values of NDVI. This study showed that in cool climates, there is the potential for using precision viticulture techniques to understand the variability in vineyards, but the variable weather presents a challenge for understanding the driving forces of that variability.
Resumo:
‘The Father of Canadian Transportation’ is a term commonly associated with William Hamilton Merritt. Although he is most known for being one of the driving forces behind the building of the first Welland Canal, he was many things throughout his life; a soldier, merchant, promoter, entrepreneur and politician to name a few. Born on July 3, 1793 at Bedford, Westchester County, N.Y. to Thomas Merritt and Mary Hamilton, Merritt’s family relocated to Canada shortly after in 1796. The move came after Merritt’s father petitioned John Graves Simcoe for land in Upper Canada after serving under him in the Queen’s Rangers during the American Revolution. The family quickly settled into their life at Twelve Mile Creek in St. Catharines. Merritt’s father became sheriff of Lincoln County in 1803 while Merritt began his education in mathematics and surveying. After some brief travel and further education Merritt returned to Lincoln County, in 1809 to help farm his father’s land and open a general store. While a farmer and merchant, Merritt turned his attention to military endeavours. A short time after being commissioned as a Lieutenant in the Lincoln militia, the War of 1812 broke out. Fulfilling his duty, Merritt fought in the Battle of Queenston Heights in October of 1812, and numerous small battles until the Battle of Lundy’s Lane in July 1814. It was here that Merritt was captured and held in Cheshire, Massachusetts until the war ended. Arriving back in the St. Catharines area upon his release, Merritt returned to being a merchant, as well as becoming a surveyor and mill owner. Some historians hypothesize that the need to draw water to his mill was how the idea of the Welland Canals was born. Beginning with a plan to connect the Welland River with the Twelve mile creek quickly developed into a connection between the Lakes Erie and Ontario. Its main purpose was to improve the St. Lawrence transportation system and provide a convenient way to transport goods without having to go through the Niagara Falls portage. The plan was set in motion in 1818, but most living in Queenston and Niagara were not happy with it as it would drive business away from them. Along with the opposition came financial and political restraints. Despite these factors Merritt pushed on and the Welland Canal Company was chartered by the Upper Canadian Assembly on January 19, 1824. The first sod was turned on November 30, 1824 almost a year after the initial chartering. Many difficulties arose during the building of the canal including financial, physical, and geographic restrictions. Despite the difficulties two schooners passed through the canal on November 30, 1829. Throughout the next four years continual work was done on the canal as it expended and was modified to better accommodate large ships. After his canal was underway Merritt took a more active role in the political arena, where he served in various positions throughout Upper Canada. In 1851, Merritt withdrew from the Executive Council for numerous reasons, one of which being that pubic interest had diverted from the canals to railways. Merritt tried his hand at other public works outside transportation and trade. He looked into building a lunatic asylum, worked on behalf of War of 1812 veterans, aided in building Brock’s monument, established schools, aided refugee slaves from the U.S. and tried to establish a National Archives among many other feats. He was described by some as having “policy too liberal – conceptions too vast – views too comprehensive to be comprehensible by all”, but he still made a great difference in the society in which he lived. After his great contributions, Merritt died aboard a ship in the Cornwall canal on July 5, 1862. Dictionary of Canadian Biography Online http://www.biographi.ca/EN/ShowBio.asp?BioId=38719 retrieved October 2006 Today numerous groups carry on the legacy of Merritt and the canals both in the past and present. One such group is the Welland Canals Foundation. They describe themselves as: “. . . a volunteer organization which strives to promote the importance of the present and past Welland Canals, and to preserve their history and heritage. The Foundation began in 1980 and carries on events like William Hamilton Merritt Day. The group has strongly supported the Welland Canals Parkway initiative and numerous other activities”. The Welland Canals Foundation does not work alone. They have help from other local groups such as the St. Catharines Historical Society. The Society’s main objective is to increase knowledge and appreciation of the historical aspects of St. Catharines and vicinity, such as the Welland Canals. http://www.niagara.com/~dmdorey/hssc/dec2000.html - retrieved Oct. 2006 http://www.niagara.com/~dmdorey/hssc/feb2000.html - retrieved Oct. 2006
Resumo:
The menu, with wine list from the Ladies’ and Gentlemens’ Ordinary of the Clifton House hotel in Niagara Falls, Ont. Also includes handwritten additions or alterations to the printed menu. The proprietors of the hotel were D.H. Bromley & Co. The Clifton House hotel was built in 1833 and destroyed by fire in 1896. It was known as the finest hotel on the Canadian side of the falls. Oakes Garden Theatre marks its location today.
Resumo:
Survey map of the Second Welland Canal created by the Welland Canal Company showing the areas in and around Port Dalhousie and Grantham Township. Identified structures associated with the Canal include Lock 1, Lighthouse, Lighthouse Keeper's House, East and West Piers, Harbour, Waste Weir, Store House, Collector's Office, Collector Assistant Office, Lock Tender's House and the new towing path. Features of the First Welland Canal are noted in red ink and includes the old Harbour, old Lock 1, old towing path and the original bed of the Twelve Mile Creek. The surveyors' measurements and notes can be seen in red and black ink and pencil. Local area landmarks and businesses are also identified and include streets and roads (ex. Lock Street and Colonel Clark's Cattle Road), Alex Muir's Dry Dock, RandJ Laurie Flouring Mill, R. Laurie and Company Grist Mill, A. Morrison Saw Mill, Johnson's Tavern, a store and a church. Properties and property owners of note are: Concession 1 Lots 21 and 22, John Christie, John Clark, N. Pawling, William Pawling, W. Carter, G.A. Clark, J. Maven, Mrs. Wood, James Drabble and J. Woodall.
Resumo:
Survey map of the Second Welland Canal created by the Welland Canal Company showing a portion of the Grantham Township near Port Dalhousie. Identified structures associated with the Canal include the new towing path. The surveyors' measurements and notes can be seen in red and black ink and pencil. Features of the First Welland Canal are noted in red ink and include the old Lock 2, old towing path and the original bed of the Twelve Mile Creek. Local area landmarks are also identified and include streets and roads (ex. Side Line and Old Road), four unnamed bridges, and a tree stump along the old towing path. A New Road to Port Dalhousie is featured in red ink. Properties and property owners of note are: Concession 3 Lots 21, 22 and 23, Concession 4 Lots 21, 22 and 23, Jabez Johnson, Adam Gould, Peter Weaver and Samuel Wood.
Resumo:
Survey map of the Second Welland Canal created by the Welland Canal Company showing a portion of the Grantham Township near Port Dalhousie. Identified structures associated with the Canal include the tow path and floating tow path. The surveyors' measurements and notes can be seen in red and black ink and pencil. Features of the First Welland Canal are noted in red ink and include the old towing path, the Old Canal, two unnamed bridges traversing the Old Canal, and the bed of the Twelve Mile Creek. Local area landmarks are also identified and include streets and roads (ex. Old Road, Side Line, Road to Port Dalhousie), Samuel Wood's house, Peter Weaver's house, J. R. Tenbroeck's house, a poplar and walnut tree along the east shore, an oak and hickory tree along the west shore, and a walnut tree stump along the west shore. Properties and property owners of note are: Concession 3 Lots 21, 22, and 23, Concession 4 Lots 21, 22, and 23, Adam Gould, Samuel Wood, Peter Weaver, and John R. Tenbroeck.
Resumo:
Survey map of the Second Welland Canal created by the Welland Canal Company showing the area between the Townships of Grantham and Louth. Identified structures associated with the Canal include the floating tow path. The surveyors' measurements and notes can be seen in red and black ink and pencil. Features of the First Welland Canal are noted in red ink and include the old towing path, and the original bed of the Twelve Mile Creek. Local area landmarks are also identified and include streets and roads (ex. New Road, 1st Concession Road, and an unnamed road in the top right corner), an unnamed bridge along New Road, J. Martindale's House, an Old Saw Mill, Richardsons Creek, Georges Point, and an oak tree at Georges Point. Properties and property owners of note are: Concession 2 Lot 23 and Concession 3 Lot 23 in the Grantham Township, Concession 2 Lots 1 and 2, and Concession 3 Lots 1 and 2 in the Louth Township, Peter Weaver, J. Martindale, and John Bonner. A property belonging to the Board of Works is outlined in red at Georges Point.
Resumo:
Survey map and description of Peter May's land created by The Welland Canal Company. Included is a written description of the land along with a drawing of the land. Noteable features include; a large pond, the original bed of the 12 Mile Creek. Surveyor notes are seen in pencil on the map. The property is on the second concession in Grantham. Click on 'detail' to see Map
Resumo:
Survey map and description of Robert Brown's land created by The Welland Canal Company. Included is a two page written description of the land along with a drawing of the land. Noteable features include; line between Grantham and Louth townships, bed of the 12 mile creek. Surveyor notes are seen in pencil on the map, including notes about the deed to the land.
Resumo:
Survey map and description of Robert Brown's land created by The Welland Canal Company. Included is a two page written description of the land along with a drawing of the land. Noteable features include; line between Grantham and Louth townships, bed of the 12 mile creek. Surveyor notes are seen in pencil on the map, including notes about the deed to the land.
Resumo:
The St. Lawrence Seaway is a system of locks, canals and channels. Construction of the seaway began in 1954 and it opened on April 25th, 1959. It consists of a 189 mile (306 kilometer) stretch of the seaway between Montreal and Lake Ontario. The Seaway is considered to be an engineering feat with 7 locks in the Montreal – Lake Ontario section which lift vessels to 246 feet (75 meters) above sea level. The 28 mile (44 kilometer) Welland Canal is the fourth version of a link between Lake Ontario and Lake Erie. Today there are 8 Canadian locks which lift ships 326 feet (100 meters) over the Niagara Escarpment. The St. Lawrence Seaway Authority is a Canadian Government Crown Corporation which is financially self-sufficient. It depends on the tolls charged to the users of the Seaway for its revenue and operating expenses.
Resumo:
Some Ecological Factors Affecting the Input and Population Levels of Total and Faecal Coliforms and Salmonella in Twelve Mile Creek, Lake Ontario and Sewage Waters Near St. Catharines, Ontario. Supervisor: Dr. M. Helder. The present study was undertaken to investigate the role of some ecological factors on sewage-Dorne bacteria in waters near St. Catharines, Ontario. Total and faecal coliform levels and the presence of Salmonella were monitored for a period of a year along with determination of temperature, pH, dissolved oxygen, total dissolved solids, nitrate N, total phosphate P and ammonium N. Bacteriological tests for coliform analysis were done according to APHA Standard Methods by the membrane filtration technique. The grab sampling technique was employed for all sampling. Four sample sites were chosen in the Port Dalhousie beach area to determine what bacteriological or physical relationship the sites had to each other. The sample sites chosen were the sewage inflow to and the effluent from the St. Catharines (Port Dalhousie) Pollution Control Plant, Twelve Mile Creek below the sewage outfall and Lake Ontario at the Lakeside Park beach. The sewage outfall was located in Twelve Mile Creek, approximately 80 meters from the creek junction with the beach and piers on Lake Ontario. Twelve Mile Creek normally carried a large volume of water from the WeIland Canal which was diverted through the DeCew Generating Station located on the Niagara Escarpment. An additional sample site, which was thought to be free of industrial wastes, was chosen at Twenty Mile Creek, also in the Niagara Region of Ontarioo 3 There were marked variations in bacterial numbers at each site and between each site, but trends to lower_numbers were noted from the sewage inflow to Lake Ontario. Better correlations were noted between total and faecal coliform population levels and total phosphate P and ammonium N in Twenty Mile Creek. Other correlations were observed for other sample stations, however, these results also appeared to be random in nature. Salmonella isolations occurred more frequently during the winter and spring months when water temperatures were minimal at all sample stations except the sewage inflow. The frequency of Salmonella isolations appeared to be related to increased levels of total and faecal coli forms in the sewage effluent. However, no clear relationships were established in the other sample stations. Due to the presence of Salmonella and high levels of total and faecal coliform indicator organisms, the sanitary quality of Lake Ontario and Twelve Mile Creek at the sample sites seemed to be impaired over the major portion of the study period.