3 resultados para Perte de charge
em Brock University, Canada
Resumo:
Thomas Brock Fuller was born in 1810 in Kingston, Ont. and died in 1884 in Hamilton, Ont. At the age of seven he was adopted by his aunt Margaret and her husband Rev. William Leeming, a Church of England missionary in Niagara. Fuller would go on to become a minister himself, serving in Montreal, Lachine, Chatham, Thorold and Toronto. In 1875 he became the first bishop of the new diocese of Niagara. Thomas Brock Fuller was married to Cynthia Street, daughter of well-known merchant Samuel Street. Together they raised a family of six sons and three daughters. The poem may have been written by Thomas Brock Fuller himself.
Resumo:
Reflectance measurements along the c-axis of La1.875 Bao.125CU04 at temperatures above(6K) and below(O.5K) the bulk superconducting transition temperature(3K) were performed using a Bruker rapid scan spectrometer and a Martin-Puplett polarizing spectrometer. It was found that when polarized light reflected from a sample the Bruker rapid scan spectrometer has a low frequency cutoff of lOcm-1 while the Martin-Puplett polarizing spectrometer has a low frequency cutoff of 6cm-1 A superconducting pla ma edge was absent in all measurements taken. It was concluded that if a superconducting plasma edge exists in La1.875Bao.125CU04 it is below 6cm-1.
Resumo:
Fermi patches in quasi-two dimensional charge density waves (CDW) have not described the connection to superconductivity (SC) according to theory adequately at this point in time. The connection between CDW and SC in the quasi-two dimensional material CuxTiSe2 is an interesting one which might reveal mechanisms in unconventional superconductors. A previous Brock graduate student grew crystals of CuxTiSe2. The precise doping of the samples was not known. In order to determine the doping parameter x in CuxTiSe2, a sensitive resistivity measurement system was necessary. A new resistivity measurement system was designed and implemented utilizing an Infrared Labs HDL-10 He3 cryostat. By comparing with data from the literature, doping of two samples was investigated using the new measurement system and a Quantum Design Magnetic Property Measurement System (MPMS). Methods for determining the doping revealed that the old resistivity system would not be able to determine the CDW transition temperature of highly doped samples or doping for elongated samples due to electronic noise. Doping in one sample was found to be between x=0.06 and x=0.065. Values of doping in the second sample had a discrepancy but could be explained by incorrect sample orientation.