3 resultados para Pedestrian Kinematics.
em Brock University, Canada
Resumo:
The original Master Plan of 1964 called for the campus to stretch out 1 1/4 miles across the escarpment with arts buildings west of the tower and science buildings to the east. This plan laid out the development of Brock for the next 10 or 11 years by which time enrollment was expected to be near 8000 students. Pictured here is the tower and university centre. The view is looking east towards a cluster of science buildings and residences in the background.
Resumo:
This study examined how perturbation-evoked compensatory arm reactions in individuals with Parkinson’s disease (PD) are influenced by explicit verbal instruction. Ten individuals with PD and 15 older adults without PD responded to surface translations with or without specific instruction to reach for and grasp the handrail. Electromyographic (EMG) and kinematic recordings were taken from the reaching arm. Results showed that individuals with and without PD benefitted similarly from explicit instruction. Explicit instruction resulted in earlier (p=0.005) and larger (p<0.001) medial deltoid EMG responses in comparison to no specific instructions. Compensatory arm reactions also occurred with a higher peak medio-lateral wrist velocity (p<0.001) and higher peak shoulder abduction angular velocity (p<0.001) with explicit instruction. Explicit instruction positively influenced compensatory arm reactions in individuals with and without PD. Future research is needed to determine whether the benefits of instruction persist over time and translate to a loss of balance in real life.
Resumo:
The purpose of this study was to determine the influence of an ongoing cognitive task on an individual’s ability to generate a compensatory arm response. Twenty young and 16 older adults recovered their balance from a support surface translation while completing a cognitive (counting) task of varying difficulty. Surface electromyographic (EMG) recordings from the shoulders and kinematics of the right arm were collected to quantify the compensatory arm response. Results indicated that the counting task, regardless of its difficulty as well as the age of the individual, had minimal influence on the onset or magnitude of arm muscle activity that occurred following a loss of balance. In contrast to previous research, this study’s findings suggest that the cortical or cognitive resources utilized by the cognitive task are not relied upon for the generation of compensatory arm responses and that older adults are not disproportionately affected by dual-tasking than young adults.