9 resultados para Pathogenic bacteria.
em Brock University, Canada
Resumo:
A total of 251 bacterial isolates were isolated from blotched mushroom samples obtained from various mushroom farms in Canada. Out of 251 stored isolates, 170 isolates were tested for pathogenicity on Agaricus bisporus through mushroom rapid pitting test with three distinct pathotypes observed: dark brown, brovm and yellow/yellow-brown blotch. Phenotypic analysis of 83 isolates showed two distinct proteinase K resistant peptide profiles. Profile group A isolates exhibited peptides with masses of 45, 18, 16 and 14 kDa and fiirther biochemical tests identified them as Pseudomonasfluorescens III and V. Profile group B isolates lacked the 16-kDa peptide and the blotch causing bacterial isolates of this group was identified as Serratia liquefaciens and Cedecea davisae. Comparative genetic analysis using Amplified Fragment Length Polymorphism (AFLP) on 50 Pseudomonas sp. isolates (Group A) showed that various blotch symptoms were caused by isolates distributed throughout the Pseudomonas sp. clusters with the exception of the Pseudomonas tolaasii group and one non-pathogenic Pseudomonas fluorescens cluster. These results show that seven distinct Pseudomonas sp. genotypes (genetic clusters) have the ability to cause various symptoms of blotch and that AFLP can discriminate blotch causing from non-blotch causing Pseudomonasfluorescens. Therefore, a complex of diverse bacterial organisms causes bacterial blotch disease
Resumo:
Conidia of the insect pathogenic fungus, Metarhizium anisopliae play an important role in pathogenicity because they are the infective propagules that adhere to the surface of the insect, then germinate and give rise to hyphal penetration of the insect cuticle. Conidia are produced in the final stages of insect infection as the mycelia emerge from the insect cadaver. The genes associated with conidiation have not yet been studied in this fiingus. hi this study we used the PCR-based technique, suppression subtractive hybridization (SSH) to selectively amplify conidial-associated genes in M. anisopliae. We then identified the presence of these differentially expressed genes using the National Center for Biotechnology Information database. One of the transcripts encoded an extracellular subtilisin-like protease, Prl, which plays a fundamental role in cuticular protein degradation. Analysis of the patterns of gene expression of the transcripts using RT-PCR indicated that conidial-associated cDNAs are expressed during the development of the mature conidium. RT-PCR analysis was also performed to examine in vivo expression of Prl during infection of waxworm larvae {Galleria mellonelld). Results showed expression of Prl as mycelia emerge and produce conidia on the surface of the cadaver. It is well documented that Prl is produced during the initial stages of transcuticular penetration by M. anisopliae. We suggest that upregulation of Prl is part of the mechanism by which reverse (from inside to the outside of the host) transcuticular penetration of the insect cuticle allows subsequent conidiation on the cadaver.
Resumo:
Fire blight is an economically important disease of apples and pears that is caused by the
bacterium Erwinia amylovora. Control of the disease depends on limiting primaly blosson1
infection in the spring, and rapidly removing infected tissue. The possibility of using phages to
control E.amylovora populations has been suggested, but previous studies have. failed to show
high treatment efficacies. This work describes the development of a phage-based biopesticide
that controls E. amylovora populations under field conditions, and significantly reduces the
incidence of fire blight.
This work reports the first use ofPantoea agglomerans, a non-pathogenic relative ofE.
amylovora, as a carrier for E. amylovora.phages. Its role is to support a replicating population of
these phages on blossom surfaces during the period when the flowers are most susceptible to
infection. Seven phages and one carrier isolate were selected for field trials from existing
collections of 56 E. amylovora phages and 249 epiphytic orchard bacteria. Selection of the .
/'
phages and carrier was based on characteristics relevant to the production and field perfonnance
of a biopesticide: host range, genetic diversity, growth under the conditions of large-scale
production, and the ability to prevent E. amylovora from infecting pear blossoms. In planta
assays showed that both the phages and the carrier make significant contributions to reducirig the
development of fire blight symptoms in pear blossoms.
Field-scale phage production and purification methods were developed based on the
growth characteristics of the phages and bacteria in liquid culture, and on the survival of phages
in various liquid media.
Six of twelve phage-carrier biopesticide treatments caused statistically signiflcant reductions in disease incidence during orchard trials. Multiplex real-time PCR was used to
simultaneously monitor the phage, carrier, and pathogen populations over the course of selected
treatments. In all cases. the observed population dynamics of the biocontrol agents and the
pathogen were consistent with the success or failure of each treatment to control disease
incidence. In treatments exhibiting a significantly reduced incidel1ce of fire blight, the average
blossom population ofE.amylovora had been reduced to pre-experiment epiphytic levels. In
successful treatments the phages grew on the P. agglomerans carrier for 2 to 3 d after treatment
application. The phages then grew preferentially on the pathogen, once it was introduced into this
blossom ecosystem. The efficacy of the successful phage-based treatnlents was statistically
similar to that of streptomycin, which is the most effective bactericide currently available for fire
blight prevention.
The in planta behaviour ofE. amylovora was compared to that ofErwinia pyrifoliae, a
closely related species that causes fire blight-like synlptoms on pears in southeast Asia. Duplex
real-time PCR was used to monitor the population dynamics of both species on single blossonls.
E. amylovora exhibited a greater competitive fitness on Bartlett pear blossoms than E. pyrifoliae.
The genome ofErwinia phage
Resumo:
Strain improvement of the insect pathogenic fungus Metarhizium anisopUae is necessary to increase its virulence towards agricultural pests and thus improve its commercial efficacy. Nevertheless, the release of genetically modified conidia in crop fields may negatively affect the ecosystem. Controlling conidiation is a potential means of limiting the release of engineered strains since conidia are the infective propagules and the means of dispersal. The purpose of this study was to research the colony development of M. anisopUae to identify potential targets for genetic manipulation to control conidiation. Following Agrobacterium tumefaciem insertional mutagenesis, phenotypic mutants were characterized using Y-shaped adaptor dependent extension PCR. Four of 1 8 colony development recombinants had T-DNA flanking sequences with high homology to genes encoding known signaling pathway proteins that regulate pathogenesis and/or asexual development in filamentous fungi. Conidial density counts and insect bioassays suggested that a Serine/Threonine protein kinase COTl homolog is not essential for conidiation or virulence. Furthermore, a choline kinase homolog is important for conidiation, but not virulence. Finally, the regulator of G protein signaling CAG8 and a NADPH oxidase NoxA homolog are necessary for conidiation and virulence. These genes are candidates for further investigation into the regulatory pathways controlling conidiation to yield insight into promising gene targets for biocontrol strain improvement.
Resumo:
Interactions between freshwater algae and bacteria were examined in a natural stream habitat and a laboratory model. Field observations provided circumstantial evidence, in statistical correlation for syntrophy between the microbial populations. This relation is probably subject to control by the temperature and pH of the aquatic environment. Several species of a pond community were isolated in axenic culture and tests were performed to determine the nature of mixed species interactions. Isolation procedures and field studies indicated that selected strains of Chlorella and Azotobacter were closely associated in their natural habitat. With the suspected controlling parameters, pH and temperature, held constant, mixed cultures of algae and bacteria were compared to axenic cultures of the same organisms, and a mutual stimulation of growth was observed. A mixed pure culture apparatus was designed in this laboratory to study the algal-bacterial interaction and to test the hypothesis that such an interaction may take place through a diffusable substance or through certain medium-borne conditions, Azotobacter was found to take up a Chlorella-produced exudate, to stimulate protein synthesis, to enhance chlorophyll production and to cause a numerical increase in the interacting Chlorella population. It is not clear whether control is at the environmental, cellular or genetic level in these mixed population interactions. Experimental observations in the model system, taken with field correlations allow one to state that there may be a direct relationship governing the population fluctuations of these two organisms in their natural stream surroundings.
Resumo:
The present study was carried out to test the hypothesis that photosynthetic bacteria contribute a large portion of the food of filter feeding zooplankton populations in Crawford Lake, Ontario. The temporal and spatial variations of both groups of organisms are strongly dependent on one another. 14 By using C-Iabelled photosynthetic bacteria. the ingestion and clearance rates of Daphnia pulex, ~. rosea, and Keratella spp were estimated during summer and fall of 1982. These quantitative estimations of zooplankton ingestion and clearence rates on photosynthetic bacteria comprised an original addition to the literature. Photosynthetic bacteria comprised a substantial portion of the diet of all four dominant zooplankton species. The evidence for this is based on the ingestion and clearance rates of the dominant zooplankton species. Ingestion rates of D. pulex and D. rosea ranged 5 5 -1 -1 - -- 5 - -- 5 from 8.3X10 -1 to 14.6XlO -1 cells.ind. hr and 8.1X10 to 13.9X10 cells.ind. hr • Their clearance rates ranged from 0.400 to 1.000 -1 -1 -1 -1 ml.ind. hr. and 0.380 to 0.930 ml.ind. hr • The ingestion and clearance -1 -1 -1 -1 rates of Keratella spp were 600 cell.ind. hr and 0.40 ul.ind. hr respectively. Clearance rates were inversely proportional to the concentration of food cells and directly proportional to the body size of the animals. It is believed that despite the very short reg~neration times of photosynthetic bacteria (3-8 hours) their population densities were controlled in part by the feeding rates of the dominant zooplankton in Crawford Lake. By considering the regeneration times of photosynthetic bacteria and the population clearance rates of zooplankton, it was estimated that between 16 to 52% and 11 to 35% of the PHotosynthetic bacteria were' consumed· by Daphnia· pulex. and Q.. rosea per day. The temporal and spatial distribution of Daphnia pulex, !.. rosea, Keratella quadrata, K. coChlearis and photosynthetic bacteria in Crawford Lake were also investigated during the period of October, 1981 to December, 1982. The photosynthetic bacteria in the lake, constituted a major food source for only those zooplankton Which tolerate anaerobic conditions. Changes in temperature and food appeared to correlate with the seasonal changes in zooplankton density. All four dominant species of zooplankton were abundant at the lake's surface (O-4m) during winter and spring and moved downwards with the thermocline as summer stratification proceeded. Photosynthetic bacteria formed a 2 m thick layer at the chemocline. The position of this photosynthetic bacterial J-ayer changed seasonally. In the summer, the bacterial plate moved upwards and following fall mixing it moved downwards. A vertical shift of O.8m (14.5 to 15.3m) was recorded during the period of June to December. The upper limit of the photosynthetic bacteria in the water column was controlled by dissolved oxygen, and sulfide concentrations While their lower limit was controlled by light intensity. A maximum bacterio- 1 chlorophyll concentration of 81 mg Bchl.l was recorded on August 9, 1981. The seasonal distribution of photosynthetic bacteria was controlledinpart' by ·theg.-"z1ai'_.Q;~.zoopl. ank:tCm;-.Qther -ciactors associated with zooplankton grazing were oxygen and sulfide concentrations.
Resumo:
A naturally occurring population of photosynthetic bacteria, located in the meromictic Crawford Lake, was examined during two field seasons (1979-1981). Primary production, biomass, light intensity, lake transparency, pH and bicarbonate concentration were all monitored during this period at selected time intervals. Analysis of the data indicated that (l4C) bacterial photosynthesis was potentially limited by the ambient bicarbonate concentration. Once a threshold value (of 270 mg/l) was reached a dramatic (2 to 10 fold) increase in the primary productivity of the bacteria was observed. Light intensity appeared to have very little effect on the primary productivity of the bacteria, even at times when analyses by Parkin and Brock (1980a) suggested that light intensity could be limiting (i.e., 3.0-5.0 ft. candles). Shifts in the absorption maxima at 430 nrn of the .bacteriochlorophyll spectrum suggested that changes in the species or strain composition of the photosynthetic bacteria had occurred during the summer months. It was speculated that these changes might reflect seasonal variation in the wavelength of light reaching the bacteria. Chemocline erosion did not have the same effect on the population size (biomass) of the photosynthetic bacteria in Crawford Lake (this thesis) as it did in Pink Lake (Dickman, 1979). In Crawford Lake the depth of the chemocline was lowered with no apparent loss in biomass (according to bacteriochlorophyll data). A reverse current was. proposed to explain the observation. The photosynthetic bacteria contributed a significant proportion (10-60%) of the lake1s primary productivitya Direct evidence was obtained with (14C) labelling of the photosynthetic bacteria, indica.ting that the zooplankton were grazing the photosynthetic bacteria. This indicated that some of the photosynthetic bacterial productivity was assimilated into the food chain of the lake. Therefore, it was concluded that the photosynthetic bacteria made a significant contribution to the total productivity of Crawford Lake.
Resumo:
An unusual postharvest spotting disease of the commercial mushroom, Agaricus bisporus, which was observed on a commercial mushroom farm in Ontario, was found to be caused by a novel pathovar of Pseudomonas tolaasii. Isolations from the discoloured lesions, on the mushroom pilei, revealed the presence of several different bacterial and fungal genera. The most frequently isolated genus being Pseudomonas bacteria. The most frequently isolated fungal genus was Penicillium. Of the bacteria and fungi assayed for pathogenicity to mushrooms, only Pseudomonas tolaasii was able to reproduce the postharvest spotting symptom. This symptom was typically reproduced 1 to 7 days postharvest, when mushroom pilei were inoculated with 101 to 105 cfu. Of the fungi tested for pathogenicity only a Penicillium sp. and Verticillium fungicola were shown to be pathogenic, however, neither produced the postharvest spotting symptom. The Pseudomonas tolaasii strain isolated from the postharvest lesions differed from a type culture (Pseudomonas tolaasii ATCC 33618) in the symptoms it produced on Agaricus bisporus pilei under the same conditions and at the same inoculum concentration. It was therefore designated a pathovar. This strain also differed from the type culture in its cellular protein profile. Neither the type culture, nor the mushroom pathogen was found to contain plasmid DNA. The presence of plasmid DNA is therefore not responsible for the difference in pathogenicity between the two strains.
Resumo:
While nitrogen is critical for all plants, they are unable to utilize organically bound nitrogen in soils. Therefore, the majority of plants obtain useable nitrogen through nitrogen fixing bacteria and the microbial decomposition of organic matter. In the majority of cases, symbiotic microorganisms directly furnish plant roots with inorganic forms of nitrogen. More than 80% of all land plants form intimate symbiotic relationships with root colonizing fungi. These common plant/fungal interactions have been defined largely through nutrient exchange, where the plant receives limiting soil nutrients, such as nitrogen, in exchange for plant derived carbon. Fungal endophytes are common plant colonizers. A number of these fungal species have a dual life cycle, meaning that they are not solely plant colonizers, but also saprophytes, insect pathogens, or plant pathogens. By using 15N labeled, Metarhizium infected, wax moth larvae (Galleria mellonella) in soil microcosms, I demonstrated that the common endophytic, insect pathogenic fungi Metarhizium spp. are able to infect living soil borne insects, and subsequently colonize plant roots and furnish ts plant host with useable, insect-derived nitrogen. In addition, I showed that another ecologically important, endophytic, insect pathogenic fungi, Beauveria bassiana, is able to transfer insect-derived nitrogen to its plant host. I demonstrated that these relationships between various plant species and endophytic, insect pathogenic fungi help to improve overall plant health. By using 13C-labeled CO2, added to airtight plant growth chambers, coupled with nuclear magnetic resosnance spectroscopy, I was able to track the movement of carbon from the atmosphere, into the plant, and finally into the root colonized fungal biomass. This indicates that Metarhizium exists in a symbiotic partnership with plants, where insect nitrogen is exchanged for plant carbon. Overall these studies provide the first evidence of nutrient exchange between an insect pathogenic fungus and plants, a relationship that has potentially useful implications on plant primary production, soil health, and overall ecosystem stability.