3 resultados para Parallel computing, Virtual machine, Composition, Determinism, Abstraction
em Brock University, Canada
Resumo:
Variations in different types of genomes have been found to be responsible for a large degree of physical diversity such as appearance and susceptibility to disease. Identification of genomic variations is difficult and can be facilitated through computational analysis of DNA sequences. Newly available technologies are able to sequence billions of DNA base pairs relatively quickly. These sequences can be used to identify variations within their specific genome but must be mapped to a reference sequence first. In order to align these sequences to a reference sequence, we require mapping algorithms that make use of approximate string matching and string indexing methods. To date, few mapping algorithms have been tailored to handle the massive amounts of output generated by newly available sequencing technologies. In otrder to handle this large amount of data, we modified the popular mapping software BWA to run in parallel using OpenMPI. Parallel BWA matches the efficiency of multithreaded BWA functions while providing efficient parallelism for BWA functions that do not currently support multithreading. Parallel BWA shows significant wall time speedup in comparison to multithreaded BWA on high-performance computing clusters, and will thus facilitate the analysis of genome sequencing data.
Resumo:
The KCube interconnection network was first introduced in 2010 in order to exploit the good characteristics of two well-known interconnection networks, the hypercube and the Kautz graph. KCube links up multiple processors in a communication network with high density for a fixed degree. Since the KCube network is newly proposed, much study is required to demonstrate its potential properties and algorithms that can be designed to solve parallel computation problems. In this thesis we introduce a new methodology to construct the KCube graph. Also, with regard to this new approach, we will prove its Hamiltonicity in the general KC(m; k). Moreover, we will find its connectivity followed by an optimal broadcasting scheme in which a source node containing a message is to communicate it with all other processors. In addition to KCube networks, we have studied a version of the routing problem in the traditional hypercube, investigating this problem: whether there exists a shortest path in a Qn between two nodes 0n and 1n, when the network is experiencing failed components. We first conditionally discuss this problem when there is a constraint on the number of faulty nodes, and subsequently introduce an algorithm to tackle the problem without restrictions on the number of nodes.
Resumo:
This research focuses on generating aesthetically pleasing images in virtual environments using the particle swarm optimization (PSO) algorithm. The PSO is a stochastic population based search algorithm that is inspired by the flocking behavior of birds. In this research, we implement swarms of cameras flying through a virtual world in search of an image that is aesthetically pleasing. Virtual world exploration using particle swarm optimization is considered to be a new research area and is of interest to both the scientific and artistic communities. Aesthetic rules such as rule of thirds, subject matter, colour similarity and horizon line are all analyzed together as a multi-objective problem to analyze and solve with rendered images. A new multi-objective PSO algorithm, the sum of ranks PSO, is introduced. It is empirically compared to other single-objective and multi-objective swarm algorithms. An advantage of the sum of ranks PSO is that it is useful for solving high-dimensional problems within the context of this research. Throughout many experiments, we show that our approach is capable of automatically producing images satisfying a variety of supplied aesthetic criteria.