31 resultados para Papillary Muscles

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Octopamine (OA) and tyramine (TA) play important roles in homeostatic mechanisms, behavior, and modulation of neuromuscular junctions in arthropods. However, direct actions of these amines on muscle force production that are distinct from effects at the neuromuscular synapse have not been well studied. We utilize the technical benefits of the Drosophila larval preparation to distinguish the effects of OA and TA on the neuromuscular synapse from their effects on contractility of muscle cells. In contrast to the slight and often insignificant effects of TA, the action of OA was profound across all metrics assessed. We demonstrate that exogenous OA application decreases the input resistance of larval muscle fibers, increases the amplitude of excitatory junction potentials (EJPs), augments contraction force and duration, and at higher concentrations (10−5 and 10−4 M) affects muscle cells 12 and 13 more than muscle cells 6 and 7. Similarly, OA increases the force of synaptically driven contractions in a cell-specific manner. Moreover, such augmentation of contractile force persisted during direct muscle depolarization concurrent with synaptic block. OA elicited an even more profound effect on basal tonus. Application of 10−5 M OA increased synaptically driven contractions by ∼1.1 mN but gave rise to a 28-mN increase in basal tonus in the absence of synaptic activation. Augmentation of basal tonus exceeded any physiological stimulation paradigm and can potentially be explained by changes in intramuscular protein mechanics. Thus we provide evidence for independent but complementary effects of OA on chemical synapses and muscle contractility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Octopamine (OA) and tyramine (TA) play important roles in homeostatic mechanisms, behavior, and modulation of neuromuscular junctions in arthropods. However, direct actions of these amines on muscle force production that are distinct from effects at the neuromuscular synapse have not been well studied. We utilize the technical benefits of the Drosophila larval preparation to distinguish the effects of OA and TA on the neuromuscular synapse from their effects on contractility of muscle cells. In contrast to the slight and often insignificant effects of TA, the action of OA was profound across all metrics assessed. We demonstrate that exogenous OA application decreases the input resistance of larval muscle fibers, increases the amplitude of excitatory junction potentials (EJPs), augments contraction force and duration, and at higher concentrations (10(-5) and 10(-4) M) affects muscle cells 12 and 13 more than muscle cells 6 and 7. Similarly, OA increases the force of synaptically driven contractions in a cell-specific manner. Moreover, such augmentation of contractile force persisted during direct muscle depolarization concurrent with synaptic block. OA elicited an even more profound effect on basal tonus. Application of 10(-5) M OA increased synaptically driven contractions by ≈ 1.1 mN but gave rise to a 28-mN increase in basal tonus in the absence of synaptic activation. Augmentation of basal tonus exceeded any physiological stimulation paradigm and can potentially be explained by changes in intramuscular protein mechanics. Thus we provide evidence for independent but complementary effects of OA on chemical synapses and muscle contractility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regulatory light chain (RLC) phosphorylation in fast twitch muscle is catalyzed by skeletal myosin light chain kinase (skMLCK), a reaction known to increase muscle force, work, and power. The purpose of this study was to explore the contribution of RLC phosphorylation on the power of mouse fast muscle during high frequency (100 Hz) concentric contractions. To determine peak power shortening ramps (1.05 to 0.90 Lo) were applied to Wildtype (WT) and skMLCK knockout (skMLCK-/-) EDL muscles at a range of shortening velocities between 0.05-0.65 of maximal shortening velocity (Vmax), before and after a conditioning stimulus (CS). As a result, mean power was increased to 1.28 ± 0.05 and 1.11 ± .05 of pre-CS values, when collapsed for shortening velocity in WT and skMLCK-/-, respectively (n = 10). In addition, fitting each data set to a second order polynomial revealed that WT mice had significantly higher peak power output (27.67 ± 1.12 W/ kg-1) than skMLCK-/- (25.97 ± 1.02 W/ kg-1), (p < .05). No significant differences in optimal velocity for peak power were found between conditions and genotypes (p > .05). Analysis with Urea Glycerol PAGE determined that RLC phosphate content had been elevated in WT muscles from 8 to 63 % while minimal changes were observed in skMLCK-/- muscles: 3 and 8 %, respectively. Therefore, the lack of stimulation induced increase in RLC phosphate content resulted in a ~40 % smaller enhancement of mean power in skMLCK-/-. The increase in power output in WT mice suggests that RLC phosphorylation is a major potentiating component required for achieving peak muscle performance during brief high frequency concentric contractions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DF2, a heptapeptide, is a member of the family of FMRFamide-like peptides and has been shown to increase the amount of transmitter released at neuromuscular junctions of the crayfish, Procambarus clarkit Recent evidence has shown that protein kinase C (PKC), calcium/calmodulin-dependent protein kinase II (CaMKII) and the cAMPdependent protein kinase (PKA) play a role in the neuromodulatory pathway of DF2. The involvement of these kinases led to the prediction that a G-protein-coupled receptor (GPCR) is activated by DF2 due to the role that each kinase plays in traditional GPCR pathways seen in other organisms and in other cells. G-proteins can also act on an enzyme that generates cyclic guanosine monophosphate (cGMP) which mediates its effects through a cGMP-dependent protein kinase (PKG). This thesis addresses the question of whether or not DF2's effects on synaptic transmission in crayfish are mediated by the cyclic nucleotides cAMP and cGMP. The effects of DF2 on synaptic transmission were examined using deep abdominal extensor muscles of the crayfish Procambarus clarkii. An identified motor neuron was stimulated, and excitatory post-synaptic potentials (EPSPs) were recorded in abdominal extensor muscle LI . A number of activators and inhibitors were used to determine whether or not cAMP, PKA, cGMP and PKG mediate the effect of this peptide. Chemicals that are known to activate PKA (Sp-cAMPS) and/or PKG (8-pCPTcGMP) mimic and potentiate DF2's effect by increasing EPSP amplitude. Inhibitors of either PKA (Rp-cAMPS) or PKG (Rp-8-pCPT-cGMPS) block a portion of the increase in EPSP amplitude induced by the peptide. When both kinase inhibitors are applied simultaneously, the entire effect of DF2 on EPSPs is blocked. The PKG inhibitor blocks the effects of a PKG activator but does not alter the effect of a PKA activator on EPSP amplitude. Thus, the PKG inhibitor appears to be relatively specific for PKG. A trend in the data suggests that the PKA inhibitor blocks a portion of the response elicited by the PKG activator. Thus, the PKA inhibitor may be less specific for PKA. Phosphodiesterase inhibitors, which are known to inhibit the breakdown of cAMP (IBMX) and/or cGMP (mdBAMQ), potentiate the effect of the peptide. These results support the hypothesis that cAMP and cGMP, acting through their respective protein kinase enzymes, mediate the ability of DFi to increase transmitter output.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated the regulation of carbohydrate metabolism and glucose uptake through changes in skeletal muscle cell volume. Using an established invitro isolated whole muscle model, soleus (SOL) and extensor digitorum longus (EDL) muscles were dissected from male rats and incubated in an organ bath containing Sigma medium-199 with 8 mM D-glucose altered to target osmolality (hypo-osmotic: HYPO, iso-osmotic: ISO, hyper-osmotic: HYPER; 190, 290, 400 mmol/kg). Muscles were divided into two groups; metabolite (MM) and uptake (MU). MM (N=48) were incubated for 60 minutes and were then immediately flash frozen. MU (N=24) were incubated for 30 minutes and then the extracellular fluid was exchanged for media containing ^H-glucose and ^'*C-mannitol and incubated for another 30 minutes. After the incubation, the muscles were freeze clamped. Results demonstrated a relative water decrease and increase in HYPER and HYPO, respectively. EDL and SOL glucose uptakes were found to be significantly greater in HYPER conditions. The HYPER condition resulted in significant alterations in muscle metabolite concentrations (lower glycogen, elevated lactate, and G-6-P) suggesting a catabolic cell state, and an increase in glycogen synthase transformation when compared to the HYPO group. In conclusion, skeletal muscle cell volume alters rates of glucose uptake with further alterations in muscle metabolites and glycogen synthase transformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis investigated whole body glucose disposal and the adaptive changes in skeletal muscle carbohydrate metabolism following 28 d of supplementation with 1000 mg R(+)-lipoic acid in young sedentary males (age, 22.1 ± 0.67 yr, body mass, 78.7 ± 10.3 kg, n=9). In certain individuals, lipoic acid decreased the 180-min area under the glucose concentration and insulin concentration curve during an oral glucose tolerance test (OGTT) (n=4). In the same individuals, lipoic acid supplementation decreased pyruvate dehydrogenase kinase activity (PDK) (0.09 ± 0.024 min"^ vs. 0.137 ± 0.023 min'\ n=4). The fasting levels of the activated form of pyruvate dehydrogenase (PDHa) were decreased following lipoic acid (0.42 ± 0.13 mmol-min'kg'^ vs. 0.82 ± 0.32 mmolrnin'^kg"\ n=4), yet increased to a greater extent during the OGTT (1.21 ± 0.34 mmol-min'kg"' vs. 0.81 ±0.13 mmolmin"'kg'\ n=4) following hpoic acid supplementation. No changes were demonstrated in the remaining subjects (n=5). It was concluded that improved glucose clearance during an OGTT following lipoic acid supplementation is assisted by increased muscle glucose oxidation through increased PDHa activation and decreased PDK activity in certain individuals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Capillaries function to provide a surface area for nutrient and waste exchange with cells. The capillary supply of skeletal muscle is highly organized, and therefore, represents an excellent choice to study factors regulating diffusion. Muscle is comprised of three specific fibre types, each with specific contractile and metabolic characteristics, which influence the capillary supply of a given muscle; in addition, both environmental and genetic factors influence the capillary supply, including aging, physical training, and various disease processes. OBJECTIVE: The present study was undertaken to develop and assess the functionality of a data base, from which virtual experiments can be conducted on the capillary supply of human muscle, and the adaptations of the capillary bed in muscle to various perturbations. METHODS: To create the database, an extensive search of the literature was conducted using various search engines, and the three key words - "capillary, muscle, and human". This search yielded 169 papers from which the data for the 46 variables on the capillary supply and fibre characteristics of muscle were extracted for inclusion in the database. A series of statistical analyses (ANOVA) were done on the capillary database to examine differences in skeletal muscle capillarization and fibre characteristics between young and old individuals, between healthy and diseased individuals, and between untrained, endurance trained, endurance welltrained, and resistance trained individuals, using SAS. RESULTS: There was a significantly higher capillarization in the young compared to the old individuals, in the healthy compared to the diseased individuals, and in the endurance-trained and endurance well-trained compared to the untrained individuals. CONCLUSIONS: The results of this study support the conclusion that the capillary supply of skeletal muscle is closely regulated by factors aimed at optimizing oxygen and nutrient supply and/or waste removal in response to changes in muscle mass and/or metabolic activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

University, 2006 Dr. Sandra J. Peters Pyruvate dehydrogenase (PDH) catalyses the decarboxylation of pyruvate, to form acetyl-CoA. PDH activity is down-regulated by intrinsic PDH kinases (predominantly PDK2 and PDK4 isoforms), but the understanding of the PDK isoform distribution and adaptation to nutritional stresses has been restricted to mixed mitochondrial populations, and not delineated between subsarcolemmal (SS) and intermyofibrillar (IMF) subpopulations. SS and IMF mitochondria exhibit distinct morphological and biochemical properties; however the functional differences are not well understood. This study investigated the effect of fed (FED) versus 48 h total foodrestriction (FR) on rat red gastrocnemius muscle PDK2 and 4 isoform content in SS and IMF mitochondria. PDK4 content was ~3-5 fold higher in SS mitochondria compared to IMF (p=0.001), and increased with FR -3-4- fold in both subpopulations (p<0.001). PDK2 was -2.5-4 fold higher in SS mitochondria compared to IMF (p=0.001), but PDK2 was unaltered with FR. Citrate synthase activity (|imol/min/mg mitochondrial protein) was not different between either subpopulation. As well there were no significant differences between mitochondrial subpopulations in PDH complex components in both fed and FR states. These results demonstrate that there is a markedly higher content of both PDK isofonns in SS compared to IMF mitochondria. Although PDK2 does not increase in either subpopulation in response to FR, PDK4 increases to a similar extent in both SS and IMF after 48 h food-restriction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to examine cell glucose kinetics in rat skeletal muscle during iso-osmotic recovery from hyper- and hypo-osmotic stress. Rat EDL muscles were incubated for sixty minutes in either HYPO (190 mmol/kg), ISO (290 mmol/kg), or HYPER (400 mmol/kg) media (Sigma medium-199, 8 mM glucose) according to an established in vitro whole muscle model. In addition to sixty minute baseline measures in aniso-osmotic conditions, (HYPO-0 n=8; ISO- 0, n=S; HYPER-0, n=8), muscles were subjected to either one minute (HYPO-1 n=8; ISO-1, n=8; HYPER-1, n=8) or five minutes (HYPO-5 n=8; ISO-5, n=8; HYPER-5, n=8) of iso-osmotic recovery media and analyzed for metabolite content and glycogen synthase percent activation. To determine glucose uptake during iso-osmotic recovery, muscles (n=6 per group) were incubated for sixty minutes in either hypo-, iso-, or hyper-osmotic media immediately followed by five minutes of iso-osmotic media containing 3H-glucose and 14 C-mannitol. Increased relative water content/decreased [glucose] (observed in HYPO-0) and decreased water content/increased [glucose] (observed in HYPER-0) returned to ISO levels within 5 minutes of recovery. Glycogen synthase percent activation increased significantly in HYPO-5 over iso-osmotic controls. Glucose uptake measurements revealed no significant differences between groups. It was determined that [glucose] and muscle water content rapidly recovered from osmotic stress demonstrating skeletal muscle's resilience to osmotic stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The primary purpose of the current investigation was to develop an elevated muscle fluid level using a human in-vivo model. The secondary purpose was to determine if an increased muscle fluid content could alter the acute muscle damage response following a bout of eccentric exercise. Eight healthy, recreationally active males participated in a cross-over design involving two randomly assigned trials. A hydration trial (HYD) consisting of a two hour infusion of a hypotonic (0.45%) saline at a rate of 20mL/minVl .73m"^ and a control trial (CON), separated by four weeks. Following the infusion (HYD) or rest period (CON), participants completed a single leg isokinetic eccentric exercise protocol of the quadriceps, consisting of 10 sets of 10 repetitions with a one minute rest between each set. Muscle biopsies were collected prior to the exercise, immediately following and at three hours post exercise. Muscle analysis included determination of wet-dry ratios and quantification of muscle damage using toluidine blue staining and light microscopy. Blood samples were collected prior to, immediately post, three and 24 hours post exercise to determine changes in creatine kinase (CK), lactate dehydrogenase (LD), interleukin-6 (IL-6) and Creactive protein (CRP) levels. Results demonstrated an increased muscle fluid volume in the HYD condition following the infusion when compared to the CON condition. Isometric peak torque was significantly reduced following the exercise in both the HYD and CON conditions. There were no significant differences in the number of areas of muscle damage at any of the time points in either condition, with no differences between conditions. CK levels were significantly greater 24hour post exercise compared to pre, immediately and three hours post similarly in both conditions. LD in the HYD condition followed a similar trend as CK with 24 hour levels higher than pre, immediately post and three hours post and LD levels were significantly greater 24 hours post compared to pre levels in the CON condition, with no differences between conditions. A significant main effect for time was observed for CRP (p<0.05) for time, such that CRP levels increased consistently at each subsequent time point. However, CRP and IL-6 levels were not different at any of the measured time points when comparing the two conditions. Although the current investigation was able to successfully increase muscle fluid volume and an increased CK, LD and CRP were observed, no muscle damage was observed following the eccentric exercise protocol in the CON or HYD conditions. Therefore, the hypotonic infusion used in the HYD condition proved to be a viable method to acutely increase muscle fluid content in in-vivo human skeletal muscle.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of the current investigation was to establish an in-l'itro skeletal muscle model to study acute alterations in resting skeletal muscle cell volume. Isolated. whole muscle (SOL and EDL) was dissected from Long Evans rats and incubated for 60 min in Sigma Medium-199 (resting tension (lg). bubbled with 95:5% 02:C02, 30 ± 2°C, and pH 7.4). Media osmolality was altered to simulate hypo-osmotic (190 ± 10 Osm) (HYPO) or hyper-osmotic conditions (400 ± 10 Osm) (HYPER) while an iso-osmotic condition (290± 1 0 Osm) (CON) served as a control (n= 17.19.17). Following incubation, relative muscle water content decreased with HYPER and increased with HYPO in both muscle types (p<0.05). The cross-sectional area of HYPO SOL type I and type II fibres increased (p<0.05) while the EDL type 11 fibre area decreased in HYPER and increascd from HYPO exposure. Furthermore, HYPER exposure in both muscles lead to decreased ATP and phosphocreatine (p<0.05) and increased creatine and lactate (p<0.05) compared to CON. This isolated skeletal muscle model proved viable and demonstrated that altering extracellular osmolality could cause acutc alterations in muscle water content and resting muscle metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pyruvate dehydrogenase (PDH) is an important regulator of carbohydrate oxidation during exercise and its activity can be down-regulated by an increase in dietary fat. The purpose of this study was to determine the acute metabolic effects of differential dietary fatty acids on the activation of PDH in its active form (PDHa) at rest and at the onset of moderate-intensity exercise. University-aged male subjects (n=7) underwent 2 fat loading trials spaced at least 2 weeks apart. Subjects consumed saturated (SFA) or polyunsaturated (PUFA) fat over the course of 5 hours. Following this, participants cycled at 65% VO2 max for 15 min. Muscle biopsies were taken prior to and following fat loading and at 1 min exercise. Plasma free fatty acids increased from 0.15 ± 0.07 to 0.54 ± 0.19 mM over 5 hours with SFA and from 0.1 1 ± 0.04 to 0.35 ±0.13 mM with PUFA. PDHa activity was unchanged following fat loading, but increased at the onset of exercise in the SFA trial, from 1 .4 ± 0.4 to 2.2 ± 0.4 /xmol/min/kg wet wt. This effect was negated in the PUFA trial (1 .2 ± 0.3 to 1 .3 ± 0.3 pimol/min/kg wet wt.). PDH kinase (PDK) was unchanged in both trials, suggesting that the attenuation of PDHa activity with PUFA was a result of changes in the concentrations of intramitochondrial effectors, more specifically intramitochondrial NADH or Ca^*. Our findings suggest that attenuated PDHa activity participates in the preferential oxidation of PUFA during moderateintensity exercise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated the regulation of carbohydrate metabolism through changes in skeletal muscle cell volume immediately post contraction and during recovery. Using an established in vitro isolated muscle strip model, soleus (SOL) and extensor digitorum longus (EDL) were dissected from male rats and incubated in an organ bath (perfused with 95% O2; 5% CO2, pH 7.4, temperature 25°C) containing medium- 199 altered to a target osmotic condition (iso-, hypo- or hyper-osmotic; 290, 1 80, 400 mmol/kg). Muscles were stimulated for 10 minutes (40 Hz SOL; 30 Hz EDL) and then either immediately flash frozen or allowed to recover for 20 minutes before subsequent metabolite and enzyme analysis. Results demonstrated a relative water decrease in HYPER vs. HYPOosmotic condition (n=8/group; p<0.05) regardless of muscle type. Specifically, the SOL HYPER condition had elevated metabolite concentrations after 10 minutes of stimulation in comparison to both HYPO and ISO (p<0.05), while EDL muscle did not show any significant difTerences between the HYPER or HYPO conditions. After 20 minutes of recovery, metabolic changes occurred in both SOL and EDL with the SOL HYPER condition showing greater relative changes in metabolite concentrations versus HYPO. The results of the current study have demonstrated that osmotic imbalance induces metabolic change within the skeletal muscle cell and muscle type may influence the mechanisms utilized for cell volume regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: Overuse injuries in violinists are a problem that has been primarily analyzed through the use of questionnaires. Simultaneous 3D motion analysis and EMG to measure muscle activity has been suggested as a quantitative technique to explore this problem by identifying movement patterns and muscular demands which may predispose violinists to overuse injuries. This multi-disciplinary analysis technique has, so far, had limited use in the music world. The purpose of this study was to use it to characterize the demands of a violin bowing task. Subjects: Twelve injury-free violinists volunteered for the study. The subjects were assigned to a novice or expert group based on playing experience, as determined by questionnaire. Design and Settings: Muscle activity and movement patterns were assessed while violinists played five bowing cycles (one bowing cycle = one down-bow + one up-bow) on each string (G, D, A, E), at a pulse of 4 beats per bow and 100 beats per minute. Measurements: An upper extremity model created using coordinate data from markers placed on the right acromion process, lateral epicondyle of the humerus and ulnar styloid was used to determine minimum and maximum joint angles, ranges of motion (ROM) and angular velocities at the shoulder and elbow of the bowing arm. Muscle activity in right anterior deltoid, biceps brachii and triceps brachii was assessed during maximal voluntary contractions (MVC) and during the playing task. Data were analysed for significant differences across the strings and between experience groups. Results: Elbow flexion/extension ROM was similar across strings for both groups. Shoulder flexion/extension ROM increaslarger for the experts. Angular velocity changes mirrored changes in ROM. Deltoid was the most active of the muscles assessed (20% MVC) and displayed a pattern of constant activation to maintain shoulder abduction. Biceps and triceps were less active (4 - 12% MVC) and showed a more periodic 'on and off pattern. Novices' muscle activity was higher in all cases. Experts' muscle activity showed a consistent pattern across strings, whereas the novices were more irregular. The agonist-antagonist roles of biceps and triceps during the bowing motion were clearly defined in the expert group, but not as apparent in the novice group. Conclusions: Bowing movement appears to be controlled by the shoulder rather than the elbow as shoulder ROM changed across strings while elbow ROM remained the same. Shoulder injuries are probably due to repetition as the muscle activity required for the movement is small. Experts require a smaller amount of muscle activity to perform the movement, possibly due to more efficient muscle activation patterns as a result of practice. This quantitative multidisciplinary approach to analysing violinists' movements can contribute to fuller understanding of both playing demands and injury mechanisms .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Increasing the impulse activity of neurons in vivo over 3 or more days causes a reduction in transmitter release that persists for days or weeks (eg. Mercier and Atwood, 1989). This effect is usually accompanied by decreased synaptic fatigue. These two changes involve presynaptic mechanisms and indicate "long-term adaptation" (LTA) of nerve terminals. Previous experiments have shown that LTA requires extracellular calcium and protein synthesis (eg. Hong and Lnenicka, Soc. Neurosci. Abstr. 17:1322) and appears to involve communication between the cell body and the nerve terminals. The present study examines the possibility that the reduction in transmitter release is caused by an -increase in the calcium buffering ability within the nerve terminals. It examines the responses of adapted and control nerve terminals to exogenously applied calcium buffer, BAPTA-AM, which decreases transmitter release (Robitialle and Charlton, 1992). If LTA increases intrinsic Ca2+-buffering, the membrane permeant form of BAPTA should have less effect on adapted nerve terminals than on controls. Experiments are performed on the phasic abdominal extensor motor neurons of the crayfish, Procambarns clarkii. BAPTA-AM decreases excitatory postsynaptic potentials (EPSP's) of the phasic extensor muscles in a dosedependent manner between 5 and 50 JLM. LTA is elicited by in vivo stimulation at 2.5 Hz for 2-4 h per day over 3 days, which reduces EPSP's by over 50%. Experiments indicate that BAPTA-AM produces no significant change in EPSP reduction in adapted neurons when compared to controls. These results do not support the hypothesis that increased daily activity alters rapid intrinsic calcium buffers, that are able to reduce transmitter output in the same manner as BAPTA.