2 resultados para Pantoea
em Brock University, Canada
Resumo:
Forty-four bacteriophage isolates of Erwinia amy/ovora, the causal agent of fire blight, were collected from sites in and around the Niagara Region of Southern Ontario in the summer of 1998. Phages were isolated only from sites where fire blight was present. Thirty-seven of these phages were isolated from the soil surrounding infected trees, with the remainder isolated from aerial plant tissue samples. A mixture of six E. amy/ovora bacterial host strains was used to enrich field samples in order to avoid the selection bias of a single-host system. Molecular characterization of the phages with a combination of peR and restriction endonuclease digestions showed that six distinct phage types were isolated. Ten phage isolates related to the previously characterized E. amy/ovora phage PEa1 were isolated, with some divergence of molecular markers between phages isolated from different sites. The host ranges of the phages revealed that certain types were unable to efficiently lyse some E. amy/ovora strains, and that some types were able to lyse the epiphytic bacterium Pantoea agg/omerans. Biological control of E. amy/ovora by the bacteriophages was assessed in a bioassay using discs of immature pear fruit. Twenty-three phage isolates were able to significantly suppress the incidence of bacterial exudate on the pear disc surface. Quantification of the bacterial population remaining on the disc surface indicated that population reductions of up to 97% were obtainable by phage treatment, but that elimination of bacteria from the surface was not possible with this model system.
Resumo:
It has been proposed that phages can be used commercially as a biopesticide for the control of fire blight caused by the phytopathogen Erwinia amylovora. The aim of these studies was to investigate two common bacterial resistance mechanisms, lysogeny and exopolysaccharide production and their influence on phage pathogenesis. A multiplex real-time PCR protocol was designed to monitor and quantify Podoviridae and Myoviridae phages. This protocol is compatible with known E. amylovora and Pantoea agglomerans rtPCR primers/probes which allowed simultaneous study of both phage and bacterial targets. Using in vitro positive phage selection, bacteriophage insensitive derivatives were isolated within sensitive populations of E. amylovora. Prophage screening with real-time PCR and mitomycin C induction determined that the insensitive derivatives harboured the temperate Podoviridae phage ΦEaTlOO. Lysogenic conversion resulted in resistance to secondary homologous phage infections. Prophage screening of environmental samples of E. amylovora and P. agglomerans collected from various locations in Canada, United States and Europe did not demonstrate lysogeny. Therefore, lysogeny is rare or absent while these bacterial species reside on the plant. Recombineering was used to construct exopolysaccharide deficient E. amylovora mutants. The EPS amylovoran mutants became resistant to Podoviridae and certain Siphoviridae phages. Increasing amylovoran production increased phage population growth, presumably by increasing the total number of bacterial cell surface receptors which promoted increased phage infections. In contrast, amylovoran did not playa role in Myoviridae infections, nor did production of the EPS levan for any phage pathogenesis.