5 resultados para Panels of artistic designs

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dr. Gibson was truly involved in nearly every aspect of the formation of Brock University. Pictured here is Dr. Gibson's preliminary design sketches and ideas for the Brock Coat of Arms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis consists of a quantitative analysis of the regional prevalence of certain artistic motifs as they appear in Minoan wall painting of the Neopalatial period. This will help to establish the relative degree of artistic autonomy exercised by each of the sites included in this study. The results show that the argument for itinerant artists during this time period is a strong one, but the assumption that these travelling artists were being controlled by any one palace-centre is erroneous. Rather, the similarities and differences seen suggest that the choices were predicated either by the specific patrons, or by the function of the associated building or room. Thus, the motifs found within this study should be understood as constituting a cultural identity, with greater or lesser degrees of regional homogeneity, which act as one facet of a number of cultural indicators that can be used to better understand the role of artists and regional dynamics on the island during the Bronze Age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Power at the Falls: The first recorded harnessing of Niagara Falls power was in 1759 by Daniel Joncairs. On the American side of the Falls he dug a small ditch and drew water to turn a wheel which powered a sawmill. In 1805 brothers Augustus and Peter Porter expanded on Joncairs idea. They bought the American Falls from New York State at public auction. Using Joncairs old site they built a gristmill and tannery which stayed in business for twenty years. The next attempt at using the Falls came in 1860 when construction of the hydraulic canal began by the Niagara Falls Hydraulic Power and Manufacturing Co. The canal was complete in 1861 and brought water from the Niagara river, above the falls, to the mills below. By 1881 the Niagara Falls Hydraulic Power and Manufacturing Co. had a small generating station which provided some electricity to the village of Niagara Falls and the Mills. This lasted only four years and then the company sold its assets at public auction due to bankruptcy. Jacob Schoellkopf arrived at the Falls in 1877 with the purchase of the hydraulic canal land and water and power rights. In 1879 Schoellkopf teamed up with Charles Brush (of Euclid Ohio) and powered Brush’s generator and carbon arc lights with the power from his water turbines, to illuminate the Falls electrically for the first time. The year 1895 marked the opening of the Adam No. 1 generating station on the American side. The station was the beginnings of modern electrical utility operations. The design and operations of the generating station came from worldwide competitions held by panels of experts. Some who were involved in the project include; George Westinghouse, J. Pierpont Morgan, Lord Kelvin and Nikoli Tesla. The plants were operated by the Niagara Falls Power Company until 1961, when the Robert Moses Plant began operation in Lewiston, NY. The Adams plants were demolished that same year and the site used as a sewage treatment plant. The Canadian side of the Falls began generating their own power on January 1, 1905. This power came from the William Birch Rankine Power Station located 500 yards above the Horseshoe Falls. This power station provided the village of Fort Erie with its first electricity in 1907, using its two 10,000 electrical horsepower generators. Today 11 generators produce 100,000 horsepower (75 megawatts) and operate as part of the Niagara Mohawk and Fortis Incorporated Power Group.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the 1950’s, the Rittenhouse family of Vineland in the Niagara Peninsula opened a craft store and studio. Within a short period of time, they realized that resources for the craft of rug hooking were in demand and they began to build their business around this niche. Edna Rittenhouse, the mother, was the wool dyer; Margaret Rowan, the daughter, was the pattern designer; Ted Rowan, the son-in-law, changed careers and became the manager of the family business. The 1960’s were a prosperous time, not only in the Niagara Peninsula, but also for the Rittenhouse business. Edna Rittenhouse had been hooking rugs for decades but she and her family worked at developing and sharing newer techniques with newer materials. Shading manuals were authored and published; students became teachers; creativity abounded in the demand for and the creation of new designs. Instead of using woolen yarn, they were using pure woolen fabric; instead of using a standard cutter, they began using a uniquely designed cutter; instead of using frames, they employed a table top method. The new material and technique resulted in a rug with a smooth, uniform texture and a soft nap. Since many crafters belonged to crafters guilds, Margaret and Ted Rowan began promoting the idea of a guild for rug hookers and in time the Ontario Hooking Craft Guild was also a reality. A joint project between Chatelaine magazine and the Rittermere studio for Canada’s centennial year of 1967 was extremely well received within the circle of hooking crafters and the Rittermere Farm Craft Studio became a North American landmark for crafters. From this point onward the studio had a large customer base not only in North America but also overseas. The studio remained popular until 1984 when Margaret and Ted Rowan decided to retire. The Rittermere name has been preserved in the name of Rittermere-Hurst-Field which is a similar business located in Aurora which is just north of Toronto.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three dimensional model design is a well-known and studied field, with numerous real-world applications. However, the manual construction of these models can often be time-consuming to the average user, despite the advantages o ffered through computational advances. This thesis presents an approach to the design of 3D structures using evolutionary computation and L-systems, which involves the automated production of such designs using a strict set of fitness functions. These functions focus on the geometric properties of the models produced, as well as their quantifiable aesthetic value - a topic which has not been widely investigated with respect to 3D models. New extensions to existing aesthetic measures are discussed and implemented in the presented system in order to produce designs which are visually pleasing. The system itself facilitates the construction of models requiring minimal user initialization and no user-based feedback throughout the evolutionary cycle. The genetic programming evolved models are shown to satisfy multiple criteria, conveying a relationship between their assigned aesthetic value and their perceived aesthetic value. Exploration into the applicability and e ffectiveness of a multi-objective approach to the problem is also presented, with a focus on both performance and visual results. Although subjective, these results o er insight into future applications and study in the fi eld of computational aesthetics and automated structure design.