9 resultados para PTERIDOPHYTE SPORES
em Brock University, Canada
Resumo:
Palynomorphs from two siliciclastic margins were examined to gain insights into continental margin architecture. Sea level change is thought to be one of the primary controls on continental margin architecture. Because Late Neogene glacioeustasy has been well studied marine sediments deposited during the Late Neogene were examined to test this concept. Cores from the outer shelf and upper slope were taken from the New Jersey margin in the western North Atlantic Ocean and from the Sunda Shelf margin in the South China Sea. Continental margin architecture is often described in a sequence stratigraphic context. One of the main goals of both coring projects was to test the theoretical sequence stratigraphic models developed by a research group at Exxon (e.g. Wilgus et al., 1988). Palynomorphs provide one of the few methods of inferring continental margin architecture in monotonous, siliciclastic marine sediments where calcareous sediments are rare (e.g. New Jersey margin). In this study theoretical models of the palynological signature expected in sediment packages deposited during the various increments of a glacioeustatic cycle were designed. These models were based on the modem palynomorph trends and taphonomic factors thought to control palynomorph distribution. Both terrestrial (pollen and spores) and marine (dinocysts) palynomorphs were examined. The palynological model was then compared with New Jersey margin and Sunda Shelf margin sediments. The predicted palynological trends provided a means of identifying a complete cycle of glacioeustatic change (Oxygen Isotope Stage 5e to present) in the uppermost 80 meters of sediment on the slope at the New Jersey margin. Sediment availability, not sea meters of sediment on the slope at the New Jersey margin. Sediment availability, not sea level change, is thought to be the major factor controlling margin architecture during the late Pleistocene here at the upper slope. This is likely a function of the glacial scouring of the continents which significantly increases sediment availability during glacial stages. The subaerially exposed continental shelf during the lowstand periods would have been subject to significant amounts of erosion fi:om the proglacial rivers flowing fi-om the southern regions of the ice-sheet. The slope site is non-depositional today and was also non-depositional during the last full interglacial period. The palynomorph data obtained fi-om the South China Sea indicate that the major difference between the New Jersey Margin sites and the Sunda Shelf margin sites is the variation in sediment supply and the rate of sediment accumulation. There was significantly less variation in sediment supply between glacial and interglacial periods and less overall sediment accumulation at the Sunda Shelf margin. The data presented here indicate that under certain conditions the theoretical palynological models allow the identification of individual sequence stratigraphic units and therefore, allow inferences regarding continental margin architecture. The major condition required in this approach is that a complete and reliable database of the contemporaneous palynomorphs be available.
Resumo:
This investigation comprises three parts: (1) the source, mechanism of transport, and distribution of pollen, spores and other palynomorphs in Georgian Bay bottom sediments and a comparison of these data with the contemporary vegetation, (2) the relative significance of fluvial transportation of pollen and spores, and (3) the late- and postglacial history of vegetational and climatic changes in the Georgicin Bay region. Modem pollen and spore assemblages in Georgian Bay do reflect the surrovinding vegetation when preservation and pollen production by the different species are considered and accounted for. Relative pollen percentage and concentration isopoll patterns indicate that rivers contribute large quantities of pollen and spores to Georgian Bay. This is further substantiated by large amounts of pollen and spores which were caught in traps in the Moon, Muskoka, and Nottawasaga Rivers which flow into Georgian Bay. The majority of pollen and spores caught in these traps were washed into the rivers by surface water runoff and so reflect the vegetation of the watershed in a regional sense. In a 12.9 metre long sediment core from northeastern Georgian Bay the relative percentage and absolute pollen concentrations allow correlation of Georgian Bay Lake phases with climatic and forest history. Four distinct pollen zones are distinguished: zone GB IV which is the oldest, reflects the succession from open spruce woodland to boreal forest; zone GB III represents a period of pine-mixed hardwoods forests from about 10,000 to 7,500 years ago. A pine-maplehemlock association dominated in zone GB II, although during the culmination of postglacial warming about 4,000 to 5,000 years ago the Georgian Bay forests had a more deciduous character. Zone GB I clearly shows European man's disturbance of the forest by logging activities.
Resumo:
Cherts from the Middle Devonian Onondaga Formation of the Niagara Peninsula in Southern Ontario and Western New York State can now be distinguished from those of the Early Devonian Bois Blanc Formation of the same area based on differences in petrology, acritarchs, spores, and "Preservation Ratio" values. The finely crystalline, carbonate sediments of the Bois Blanc Formation were deposited under shallow, low energy conditions characterised by the acritarchs Leiofusa bacillum and L. minuta and a high relative abundance of the spore, Apiculiretusispora minor. The medio crystalline and bioclastic carbonate sediments of the Onondaga Formation were deposited under shallow, high energy conditions except for the finely crystalline lagoonal sediments of the Clarence Member which is characterised by the acritarchs Leiofusa navicula, L. sp. B, and L. tomaculata . The author has subdivided and correlated the Clarence Member of the Onondaga Formation using the "Preservation Ratio" values derived from the palynomorphs contained in the cherts. Clarence Member cherts were used by the Archaic people of the Niagara Peninsula for chipped-stone tools. The source area for the chert is considered to be the cobble beach deposits along the north shore of Lake Erie from Port Maitland to Nanticoke
Resumo:
A distinctive period of global change occurred during the PUocene between the warm Miocene and subsequent Quaternary cooling. Samples from Ocean Drilling Project Site 11 79 (-5586 mbsl, 41°4'N, 159°57'E), Site 881 (-5765 mbsl, 47°6.133'N, 161°29.490'E) and Site 882 (-3255 mbsl, 50°22'N, 167°36'E) were studied to determine the magnitude and composition ofterrigenous flux to the western mid-latitude North Pacific and its relation to climate change in East Asia since the mid-Pliocene. Dust-sized particles (including pollen), sourced from the arid regions and loess plateaus in East Asia are entrained by prevailing westerly winds and transported to the midlatitude northwest North Pacific Ocean. This is recorded by peaks in the total concentration of pollen and spores, as well as the mean grain size of allochthonous and autochthonous silicate material in abyssal marine sediments. Aridification of the Asian interior due to the phased uplift of the Himalayan-Tibetan Plateau created the modem East Asian Monsoon system dominated by a strengthening of the winter monsoon. The winter monsoon is further enhanced during glacials due to the expansion of desert and steppe environments at the expense ofwoodlands and forests recorded by the composition of palynological assemblages. The late Pliocene-Pleistocene glacials at ODP Sites 1 179, 881, and 882 are characterized by increases in grain size, magnetic susceptibility, pollen and spore concentrations around 3.5-3.3, 2.6-2.4, 1.7-1.6, and 0.9-0.7 Ma (ages based on magnetostratigraphic and biostratigraphic datums). The peaks during these times are relatively rich in pollen taxa derived primarily from steppe and boreal vegetation zones, recording cool, dry climates. The overall size increase of sediment and abundance of terrestrial palynomorphs record enhanced wind strength. The increase in magnitude of pollen and spore concentrations as well as grain size record global cooling and Northern Hemisphere glaciation. The peaks in grain size as well as pollen and spore abundance in marine sediments correlate with the mean grain size of loess in East Asia, consistent with the deflation of unarmoured surfaces during glacials. The transport of limiting nutrients to marine environments enhanced sea surface productivity and increased the rate of sediment accumulation.
Resumo:
Polyclonal antibodies prepared against the two glycoproteins (Mr 100 and 85 kDa) involved in recognition and attachment of the mycoparasite, Piptocephalis virginiana, to its hosts, Mortierella pusilla and Phascolomyces articulosus, susceptible and resistant, respectively, were employed to localize the antigens at their cell surfaces. Indirect immunocytochemical technique using secondary antibodies labelled with either FITC or gold particles as probes, were used. FITC-Iabelled antibodies revealed a discontinous pattern of fluorescence on the hyphae of MortlerelLa pusilla and no fluorescence on the hyphae of Phascolomyces articulosus. Intensity of fluorescence was high in the germinating spores of both the fungi. Fluoresence could be observed on P. articulosus hyphae pretreated with a commercial proteinase. Fluorescence was not observed on either hyphae or germinating spores of the nonhost M0 r tie re11 a ca ndelabrum and the mycoparasite P. virginiana. Antibodies labelled with gold conjugate showed a different pattern of antigen localization on the hyphal walls of the susceptible and resistant hosts. Patches of gold particles were observed allover the whole cell wall of the susceptible host but only on the inner cell wall layer of the resistant host. Cell wall fragments of the susceptible host but not those of the resistant host, previously incubated with the antibodies inhibited attachment of the mycoparasite. Implications of preferential localization of the antigen in the resistant host and its absence in the nonhost are described.
Resumo:
Mortierella pusilla is a susceptible host and supports good growth of the mycoparasite, Piptocephalis virginiana. Uninucleate spores of M. pusilla were sUbjected to N-methyl-N'-nitro-nitrosoguanidine (MNNG). To attain a high mutation frequency , a 1o-minute exposure to 10 mg/ml MNNG was used and lead to the survival of about 10 % of the spores. The exposed spores then were plated on chitin or milk plates. Approximately 30,000 colonies were examined after mutagenesis on the screening media. A strain, MUT23 , with abnormal slow growth morphology was found to delay parasitism by £. virginiana. The particular morphology was not due to auxotrophy, because this strain displayed normal hyphae when glucose was used as the sole carbon source. One interesting phenomenon was that MUT23 showed an extensive clearing zone around the colony on colloidal chitin agar after 20-25 d. On the same conditions, wild type strain did not show this phenotype. In addition, the MUT23 strain produced the same normal hypha as the wild type strain when it was grown on colloidal chitin agar. The MUT23 was also able to produce more spores on colloidal chitin agar than on malt-yeast extract and minimal media. The parasite germ tubes formed appressoria at the point of contact on the cell surface of wild type and MUT23 grown for 6 days cell surface but not on the cel surface of MUT23 grown for 2 days. Thus, interaction between MUT23 strain and the mycoparasite was dependent on MUT23 age. The effect of MUT23 filtrate on germination of the parasite was tested. Lysis of germinated spores of the parasite were observed in concentrated MUT23 filtered solution. MUT23 was compared to the wild type strain for their chitinase production in sUbmerged culture. The chitinase isozymes of both wild type and MUT23 were shown by immunoblotting. Eight distinct chitinase molecules were detected. MUT23 showed markedly higher chitinase activity than the wild type cultured in chitin-containing medium. Maximum chitinase activities of MUT23 were 13.5 fold higher at 20 day of the culture then that of wild type.
Resumo:
Cell surface proteins obtained by alkaline extraction from isolated cell walls of Mortierella pusilla and M. candelabrum, host and nonhost, respectively, to the mycoparasite, Piptocephalis virginiana, were tested for their ability to agglutinate mycoparasite spores. The host cell wall protein extract had a high agglutinating activity (788 a.u. mg- t ) as compared with the nonhost extract (21 a.li. mg- t ). SDS-polyacrylamide gel electrophoresis of the cell wall proteins revealed four protein bands, a, b, c, and d (Mr 117, 100, 85 and 64 kd, respectively) at the host surface, but not at the nonhost surface, except for the faint band c. Deletion of proteins b or c from the host cell wall protein extract significantly reduced its agglutinating activity. Proteins band c, obtained as purified preparations by a series of procedures, were shown to be two glycoproteins. Carbohydrate analysis by gas chromatography demonstrated that glucose and Nacetylglucosamine were the major carbohydrate components of the glycoproteins. It was further shown that the agglutinating activity of the pure preparation containing both band c was 500-850 times that of the single glycoproteins, suggesting the involvement of both glycoproteins in agglutination. The results suggest that the glycoproteins band c are the two subunits of agglutinin present at the host cell surface. The two glycoproteins band c purified from the host cell wall protein extract were further examined after various treatments for their possible role in agglutination, attachment and appressorium formation by the mycoparasite. Results obtained by agglutination and attachment tests showed: (1) the two glycoprotein-s are not only an agglutinin responsible for the mycoparasite spore agglutination, but may also serve as a receptor for the specific recognition, attachment and appressorium formation by the mycoparasite; (2) treatment of the rnycoparasite spores with various sugars revealed that arabinose, glucose and N-acetylglucosamine inhibited the agglutination and attachment activity of the glycoproteins, however, the relative percentage of appressorium formation was not affected by the above sugars; (3) the two glycoproteins are relatively stable with respect to their agglutinin and receptor functions. The present results suggest that the agglutination and attachment may be mediated directly by certain sugars present at the host and mycoparasite cell surfaces while the appressorlum formation may be the response of complementary combinations of both sugar and protein, the two parts of the glycoproteins at the interacting surfaces of two fungi.
Resumo:
Presence of surface glycoprotein in Piptocephalis virginiana that recognizes the host glycoproteins band c, reported earlier from our laboratory, was detected by immunofluorescence microscopy. Germinated spores of P. virginiana treated with Mortierella pusilla cell wall protein extract, primary antibodies prepared against glycoproteins band c and FITC-goat anti-rabbit IgG conjugate showed fluorescence. This indicated that on the surfaces of the biotrophic mycoparasite P. virginiana , there might be a complementary molecule which recognizes the glycoproteins band c from M. pusilla. Immunobinding analysis identified a glycoprotein of Mr 100 kDa from the mycoparasite which binds with the host glycoproteins band c, separately as well as collectively. Purification of this glycoprotein was achieved by (i) 60% ammonium sulfate precipitation, (ii) followed by heat treatment, and (iii) Sephadex G-IOO gel filtration. The glycoprotein was isolated by preparative polyacrylamide gel electrophoresis by cutting and elution. The purity of the protein ·was ascertained by SDS-PAGE and Western blot analysis. Positive reaction to periodic acid-Schiff reagent revealed the glycoprotein nature of this 100 kDa protein. Mannose was identified as a major sugar component of this glycoprotein by using a BoehringerMannheim Glycan Differentiation Kit. Electrophoretically purified glycoprotein was used to raIse polyclonal antibody in rabbit. The specificity of the antibody was determined by dot-immunobinding test and western-blot analysis. Immunofluorescence mIcroscopy revealed surface localization of the protein on the germ tube of Piptocephalis virginiana. Fluorescence was also observed at the surfaceJ of the germinated spores and hyphae of the host, M. pusilla after treatment with complementary protein from P. virginiana, primary antibody prepared against the complementary protein and FITC-goat anti-rabbit IgG conjugate.
Resumo:
Light microscope studies of the mycoparasite Piptocephalis virginiana revealed that the cylindrical spores of the parasite became spherical upon germination and produced 1-4 germ tubes. Generally t"l.vO germ tubes were produced by each spore. When this parasite was inoculated on its potential hosts, Choanephora cucurbitarum and Phascolomyces articulosus, the germ tube nearest to the host hypha continued to grow and made contact with the host hypha. The tip of the parasite's germ tube became swollen to form a distinct appressorium. Up to this stage the behavior of the parasite was similar regardless of the nature of the host. In the compatible host-parasite combination, the parasite penetrated the host, established a nutritional relationship and continued to grow to cover the host completely with its buff colored spores in 3-4 days. In the incompatible host-parasite combination, the parasite penetrated the host but its further advance was arrested. As a result of failure to establish a nutritional relationship with the resistant host, the parasite made further attempts to penetrate the host at different sites producing multiple infections. In the absence of nutrition the parasite weakened and the host outgrew the parasite completely. In the presence of a non-host species, Linderina pennispora the parasite continued to grow across the non-host 1).yp_hae vlithout establishing an initial contact. Germination studies showed that the parasite germinated equally well in the presence of host and non-host species. Further electron microscope studies revealed that the host-parasite interaction between P. virginiana and its host, C. cucurbi tarum, was compatible when the host hyphae were young slender, with a thin cell wall of one layer. The parasite appeared to penetrate mechanically by pushing the host-cell wall inward. The host plasma membrane invaginated along the involuted cell wall. The older hyphae of C. cucurbitarum possessed two distinct layers of cell wall and-showed an incompatible interaction when challenged vlith the parasite. At the point of contact, the outer layer of the host-cell wall dissolved, probably by enzymatic digestion, and the inner layer became thickened and developed a papilla as a result of its response to the parasite. The haustoria of the parasite in the old hyphae were always surrounded by a thick, well developed sheath, whereas the haustoria of the same age in the young host mycelium were devoid of a sheath during early stages of infection. Instead, they were in direct contact with the host protoplast. The incompatible interaction between a resistant host, P. articulosus and the parasite showed similar results as with the old hyphae of C. cucurbitarum. The cell wall of P. articulosus appeared thick-with two or more layers even in the 18-22 h-old hyphae. No contact or interaction was established between the parasite and the non-host L. pennispora. The role of cell wall in the resistance mechanism is discussed.