2 resultados para PHOSPHINES

em Brock University, Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exchange reactions between molecular complexes and excess acid or base are well known and have been extensively surveyed in the literature(l). Since the exchange mechanism will, in some way involve the breaking of the labile donor-acceptor bond, it follows that a discussion of the factors relating to bonding in molecular complexes will be relevant. In general, a strong Lewis base and a strong Lewis acid form a stable adduct provided that certain stereochemical requirements are met. A strong Lewis base has the following characteristics (1),(2) (i) high electron density at the donor site. (ii) a non-bonded electron pair which has a low ionization potential (iii) electron donating substituents at the donor atom site. (iv) facile approach of the site of the Lewis base to the acceptor site as dictated by the steric hindrance of the substituents. Examples of typical Lewis bases are ethers, nitriles, ketones, alcohols, amines and phosphines. For a strong Lewis acid, the following properties are important:( i) low electron density at the acceptor site. (ii) electron withdrawing substituents. (iii) substituents which do not interfere with the close approach of the Lewis base. (iv) availability of a vacant orbital capable of accepting the lone electron pair of the donor atom. Examples of Lewis acids are the group III and IV halides such (M=B, AI, Ga, In) and MX4 - (M=Si, Ge, Sn, Pb). The relative bond strengths of molecular complexes have been investigated by:- (i) (ii) (iii) (iv) (v] (vi) dipole moment measurements (3). shifts of the carbonyl peaks in the IIIR. (4) ,(5), (6) .. NMR chemical shift data (4),(7),(8),(9). D.V. and visible spectrophotometric shifts (10),(11). equilibrium constant data (12), (13). heats of dissociation and heats of reactions (l~), (16), (17), (18), (19). Many experiments have bben carried out on boron trihalides in order to determine their relative acid strengths. Using pyridine, nitrobenzene, acetonitrile and trimethylamine as reference Lewis bases, it was found that the acid strength varied in order:RBx3 > BC1 3 >BF 3 • For the acetonitrile-boron trihalide and trimethylamine boron trihalide complexes in nitrobenzene, an-NMR study (7) showed that the shift to lower field was. greatest for the BB~3 adduct ~n~ smallest for the BF 3 which is in agreement with the acid strengths. If electronegativities of the substituents were the only important effect, and since c~ Br ,one would expect the electron density at the boron nucleus to vary as BF3

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New and robust methodologies have been designed for palladium-catalyzed crosscoupling reactions involving·a novel·class oftertiary phosphine ligand incorporating a phospha-adamantane framework. It has been realized that bulky, electron-rich phosphines, when used as ligands for palladium, allow for cross-coupling reactions involving even the less reactive aryl halide substrates with a variety of coupling partners. In an effort to design new ligands suitable for carrying out cross-coupling transformations, the secondary phosphine, 1,3,5,7-tetramethyl-2,4,8-trioxa-6phosphaadamantane was converted into a number of tertiary phosphine derivatives. The ability of these tertiary phosphaadamantanes to act as effective ligands in the palladiumcatalyzed Suzuki cross-coupling was examined. 1,3,5,7-Tetramethyl-6-phenyl-2,4,8trioxa- 6-phosphaadamantane (PA-Ph) used in combination with Pdz(dba)3permitted the reaction of an array of aryl iodides, bromides and chlorides with a variety arylboronic acids to give biaryls in good to excellent yields. Subsequently, palladium complexes of PA-Ph were prepared and isolated in high yields as air stable palladium bisphosphine complexes. Two different kinds of crystals were isolated and upon characterization revealed two complexes, Pd(PA-Ph)z.dba and Pd(PA-Ph)zOz. Preliminary screening for their catalytic activity indicated that the former is more reactive than the latter. Pd(PAPh) z.dba was applied as the catalyst for Sonogashira cross-coupling reactions of aryl iodides and bromides and in the reactions of aryl bromides and chlorides with ketones to give a-arylated ketones at mild temperatures in high yields.