5 resultados para PHASE PHOTOCATALYZED REACTIONS

em Brock University, Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biotransformation of water insoluble substrates by mammalian and bacterial cells has been problematic, since these whole cell reactions are primarily performed in an aqueous environment The implementation of a twophase or encapsulated system has the advantages of providing a low water system along with the physiological environment the cells require to sustain themselves. Encapsulation of mammalian cells by formation of polyamide capsules via interfacial polymerization illustrated that the cells could not survive this type of encapsulation process. Biotransformation of the steroid spironolactone [3] by human kidney carcinoma cells was performed in a substrate-encapsulated system, yielding canrenone [4] in 70% yield. Encapsulation of nitrile-metabolizing Rhodococcus rhodochrous cells using a polyamide membrane yielded leaky capsules, but biotransformation of 2-(4- chlorophenyl)-3-methylbutyronitrile (CPIN) [6] in a free cell system yielded CPIN amide [7] in 40% yield and 94% ee. A two-phase biotransformation of CPIN consisting of a 5:1 ratio of tris buffer, pH 7.2 to octane respectively, gave CPIN acid [8] in 30% yield and 97% ee. It was concluded that Rhodococcus rhodochrous ATCC 17895 contained a nonselective nitrile hydratase and a highly selective amidase enzyme.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Re~tes artd pJ~oducts of tllerma]. d,ecom.position of sec-butyl peroxide at 110 - 150°C i.n four solvents h,ave been determined. The d,ecompos i tion vJas sb.o\'\Tn to be tlnlmolecl.llar wi tho energies of activation in toluene, benzene, and cyclohexane of 36 .7-+ 1.0, 33.2 +- 1..0, 33.t~) +.. 1.0 I'(:cal/mol respectively. The activation energy of thermal decomposition for the d,et.1terated peroxide was found to be 37.2 4:- 1.0 KC8:1/1TIol in toluene. A.bo1J.t 70 - 80/~ ol~ tJJ.e' pl~od.1..1CtS could, be explained by kn01rJ11 reactions of free allcoxy raclicals J and very littJ...e, i.f allY, disPl"Opox~tiol'lation of tll10 sec-butoxy radica.ls in t116 solvent cage could be detected. The oth,er 20 - 30% of the peroxide yielded H2 and metb.:'ll etb..yl 1{etol1e. Tl1.e yield. o:f H2 "'lIas unafJ:'ected by the nature or the viscosity of the solvent, but H2 was not formed when s-t1U202 lrJaS phctolyzed. in tolttene at 35°C nor 'tl!Jrl.en the peroxide 1;'JaS tl1.ermally o..ecoJnposed. in the gas p11ase. ~pC-Dideutero-~-butYlperoxide was prepared and decomposed in toluene at 110 - 150°C. The yield of D2 was about ·•e1ne same 248 the yield. of I{2 from s-Bu202, bU.t th.e rate of decomposition (at 135°C) 1iJas only 1/1.55 as fast. Ivlecl1.anisms fOl') J:1ydrogen produ.ction are discussed, but none satisfactorily explains all the evidence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rates and products have been determined for the thermal decomposition of bis diphenyl methyl peroxide and diphenyl methyl tert* butyl peroxide at 110@~145@C* The decomposition was uniformly unimolecular with activation energies for the bis diphenyl methyl peroxide in tetrachloroethylene* toluene and nitrobenzene 26,6* 28*3f and 27 Kcals/mole respectively. Diphenyl methyl tert* butyl peroxide showed an activation energy of 38*6 Kcals/mole* About 80-90% of the products in the case of diphenyl methyl peroxide could be explained by the concerted process, this coupled with the negative entropies of activation obtained is a conclusive evidence for the reaction adopting a major concerted path* All the products in the case of diphenyl methyl peroxide could be explained by known reactions of alkoxy radicals* About 80-85% of tert butanol and benzophenone formed suggested far greater cage disproportionation than diffusing apart* Rates of bis triphenyl methyl peroxide have been determined in tetrachloroethylene at 100-120@C* The activation energy was found to be 31 Kcals/mole*

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phosphonium salt room temperature ionic liquid tetradecyltrihexylphosphonium chloride (THPC) has been employed as an efficient reusable media for the palladium catalyzed Suzuki cross-coupling reaction of aryl halides, including aryl chlorides, under mild conditions. The cross-coupling reactions were found to proceed in THPC containing small amounts ofwater and toluene (single phase) using potassium phosphate and 1% Pd2(dba)3'CHCI3. Variously substituted iodobenzenes, including electron rich derivatives, reacted efficiently in THPC with a variety of arylboronic acids and were all complete within 1 hour at 50°C. The corresponding aryl bromides also reacted under these conditions with the addition of a catalytic amount of triphenylphosphine that allowed for complete conversion and high isolated yields. The reactions involving aryl chlorides were considerably slower, although the addition of triphenylphosphine and heating at 70°C allowed high conversion of electron deficient derivatives. Addition of water and hexane to the reaction products results in a triphasic system, from which the catalyst was then recycled by removing the top (hexanes) and bottom (aqueous) layers and adding the reagents to the ionic liquid which was heated again at 50°C; resulting in complete turnover of iodobenzene. Repetition of this procedure gave the biphenyl product in 82-97% yield (repeated five times) for both the initial and recycled reaction sequences. IL ESTERIFICATIONREACTION A new class oftrialkylphosphorane has been prepared through reaction of a trialkylphosphine with 2-chlorodimethylmalonate in the presence oftriethylamine. These new reagents promote the condensation reaction of carboxylic acids with alcohols to provide esters along with trialkylphosphine oxide and dimethylmalonate. The condensation reaction of chiral secondary alcohols can be controlled to give either high levels of inversion or retention through a subtle interplay involving basicity of the reaction media, solvent, and tuning the electronic and steric nature of the carboxylic acid and stenc nature of the phosphorane employed. A coherent mechanism is postulated to explain these observations involving reaction via an initial acyloxyphosphonium ion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Dudding group is interested in the application of Density Functional Theory (DFT) in developing asymmetric methodologies, and thus the focus of this dissertation will be on the integration of these approaches. Several interrelated subsets of computer aided design and implementation in catalysis have been addressed during the course of these studies. The first of the aims rested upon the advancement of methodologies for the synthesis of biological active C(1)-chiral 3-methylene-indan-1-ols, which in practice lead to the use of a sequential asymmetric Yamamoto-Sakurai-Hosomi allylation/Mizoroki Heck reaction sequence. An important aspect of this work was the utilization of ortho-substituted arylaldehyde reagents which are known to be a problematic class of substrates for existing asymmetric allylation approaches. The second phase of my research program lead to the further development of asymmetric allylation methods using o-arylaldehyde substrates for synthesis of chiral C(3)-substituted phthalides. Apart from the de novo design of these chemistries in silico, which notably utilized water-tolerant, inexpensive, and relatively environmental benign indium metal, this work represented the first computational study of a stereoselective indium-mediated process. Following from these discoveries was the advent of a related, yet catalytic, Ag(I)-catalyzed approach for preparing C(3)-substituted phthalides that from a practical standpoint was complementary in many ways. Not only did this new methodology build upon my earlier work with the integrated (experimental/computational) use of the Ag(I)-catalyzed asymmetric methods in synthesis, it provided fundamental insight arrived at through DFT calculations, regarding the Yamamoto-Sakurai-Hosomi allylation. The development of ligands for unprecedented asymmetric Lewis base catalysis, especially asymmetric allylations using silver and indium metals, followed as a natural extension from these earlier discoveries. To this end, forthcoming as well was the advancement of a family of disubstituted (N-cyclopropenium guanidine/N-imidazoliumyl substituted cyclopropenylimine) nitrogen adducts that has provided fundamental insight into chemical bonding and offered an unprecedented class of phase transfer catalysts (PTC) having far-reaching potential. Salient features of these disubstituted nitrogen species is unprecedented finding of a cyclopropenium based C-H•••πaryl interaction, as well, the presence of a highly dissociated anion projected them to serve as a catalyst promoting fluorination reactions. Attracted by the timely development of these disubstituted nitrogen adducts my last studies as a PhD scholar has addressed the utility of one of the synthesized disubstituted nitrogen adducts as a valuable catalyst for benzylation of the Schiff base N-diphenyl methylene glycine ethyl ester. Additionally, the catalyst was applied for benzylic fluorination, emerging from this exploration was successful fluorination of benzyl bromide and its derivatives in high yields. A notable feature of this protocol is column-free purification of the product and recovery of the catalyst to use in a further reaction sequence.