3 resultados para PENICILLIUM-FUNICULOSUM

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 5a-reductase of Penicillium decumbens ATCC 10436 was used as a model for the mammalian enzyme to investigate the mechanism of reduction of testosterone to 5adihydrotestosterone . The purpose of this study was to search for specific 5a-reductase inhibitors which antagonize prostate cancer . In a whole-cell biotransformation mode, this organism reduced testosterone (1) to 5a-dihydrosteroids (8) and 5aandrostane- 3, 17-dione (9) in yields of 28% and 37% respectively. Control experiments have shown that 5aandrostane- 3, 17-dione (9) can be produced from the corresponding alcohol (8) in a subsequent reaction separate from that catalysed by the 5a-reductase enzyme . Androst-4- ene-3, 17-dione (2) is reduced to give only (9) with a recovery of 80% The stereochemistry of the reduction was determined by 500 MHz ^H NMR analysis of the products resulting from the deuterium labelled substrates. The results were obtained by an analysis of the NOE difference spectra, double-quantum filtered phase sensitive COSY 2-D spectra, and ^^c-Ir 2-D shift correlation spectra of deuterium labelled products. According to the unambiguous assignment of the signals due to H-4a and H-4Ii in 5a-dihydro steroids, the NMR data show clearly that addition of hydrogen to the 4{5)K bond has occurred in a trans manner at positions 413 and 5a. To Study the reduction mechanism of this enzyme, several substrates were prepared as following; 3-methyleneandrost-4-en- 17fi-ol(3), androst-4-en-17i5-ol(5) , androst-4-en-3ii, 17fi-diol (6) and 4, 5ii-epoxyandrostane-3, 17-dione (7) . Results suggest that this enzyme system requires an oxygen atom at the 3-position of the steroid in order to bind the substrate. Furthermore, the mechanism of this 5a-reductase may proceed via direct addition of hydrogen at the 4,5 position without involvement of a carbonyl group as an intermediate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catalase dismutes H20 2 to O2 and H20. In successive twoelectron reactions H20 2 induces both oxidation and reduction at the heme group. In the first step the protoheme prosthetic group of beef liver catalase forms compound I, in which the heme has been oxidized from Fe3+ to Fe4+=0 and a porphyrin radical has been created. Compound II is formed by the oneelectron reduction of comp I. It retains Fe4+=0 but lacks the porphyrin radical and is catalytically inert. Molecular structures are available for Escherichia coli Hydroperoxidase II, Micrococcus Iysodeiktus, Penicillium vitale and beef liver enzymes, which contain different hemes and heme pockets. In the present work, the pockets and substrate access channels of protoheme (beef liver & Micrococcus) and heme d (HPII of E. coli and Penicillium) catalases have been analysed using Quanta™ and CharmMTM molecular modeling packages on the Silicon Graphics Iris Indigo 2 computer. Experimental studies have been carried out with two catalases, HPII (and its mutants) and beef liver. Fluoride and formate' are inhibitors of both enzymes, and their binding is modulated by the heme and by distal residues N201 & H128. Both HPII and beef liver enzymes form compound I with H202 or peracetate. The reduction of beef liver enzyme compound I to II and the decay of compound II are accelerated by fluoride. The decay of compound II is also accelerated by formate, and this reagent acts as a 2-electron donor towards compound I of both enzymes. It is concluded that heme d enzymes (Penicillium and HPII of E. coli) are formed by autocatalytic transformation of protoheme in a modified pocket which contains a characteristic serine residue as well as a partially occluded heme channel. They are less active than protoheme enzymes but also do not form the inactive compound II species. Binding of peroxide as well as fluoride and formate is prevented by mutation of H128 and modulated by mutation of N201.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An unusual postharvest spotting disease of the commercial mushroom, Agaricus bisporus, which was observed on a commercial mushroom farm in Ontario, was found to be caused by a novel pathovar of Pseudomonas tolaasii. Isolations from the discoloured lesions, on the mushroom pilei, revealed the presence of several different bacterial and fungal genera. The most frequently isolated genus being Pseudomonas bacteria. The most frequently isolated fungal genus was Penicillium. Of the bacteria and fungi assayed for pathogenicity to mushrooms, only Pseudomonas tolaasii was able to reproduce the postharvest spotting symptom. This symptom was typically reproduced 1 to 7 days postharvest, when mushroom pilei were inoculated with 101 to 105 cfu. Of the fungi tested for pathogenicity only a Penicillium sp. and Verticillium fungicola were shown to be pathogenic, however, neither produced the postharvest spotting symptom. The Pseudomonas tolaasii strain isolated from the postharvest lesions differed from a type culture (Pseudomonas tolaasii ATCC 33618) in the symptoms it produced on Agaricus bisporus pilei under the same conditions and at the same inoculum concentration. It was therefore designated a pathovar. This strain also differed from the type culture in its cellular protein profile. Neither the type culture, nor the mushroom pathogen was found to contain plasmid DNA. The presence of plasmid DNA is therefore not responsible for the difference in pathogenicity between the two strains.