14 resultados para Oxidase enzymes
em Brock University, Canada
Resumo:
Cytoch ro me c oxidase (ferrocytochrome c : 02 oxidoreductase ; EC 1.9. 3.1) is the terminal enzyme in the mitochondrial electron transport chain, catalyzing the transfer of electrons from ferrocytochrome c to molecular oxygen. The effects of two large amphiphilic molecules .. valinomycin and dibucaine upon the spectra of the isolated enzyme and upon the activity of both isolated enzyme and enzyme in membrane systems are investigated by using spectrophotometric and oxygen electrode techniques. The results show that both valinomycin and dibucaine change the Soret region of the spectrum and cause a partial inhibition in a concentration range higher than that in which they act as ionophores. It is concluded that both valinomycin and dibucain~ binding induce a conformational change of the protein structure which modifies the spectrum of the a3 CUB centre and diminishes the rate of electron transfer between cytochrome a and the binuclear centre.
Resumo:
Cytoch ro me c oxidase (ferrocytochrome c : 02 oxidoreductase ; EC 1.9. 3.1) is the terminal enzyme in the mitochondrial electron transport chain, catalyzing the transfer of electrons from ferrocytochrome c to molecular oxygen. The effects of two large amphiphilic molecules - valinomycin and dibucaine upon the spectra of the isolated enzyme and upon the activity of both isolated enzyme and enzyme in membrane systems are investigated by using spectrophotometric and oxygen electrode techniques. The results show that both valinomycin and dibucaine change the Soret region of the speetrum and cause a partial inhibition in a concentration range higher than that in which they act as ionophores. It is concluded that both valinomycin and dibucaine binding induce a conformational change of the protein structure which modifies the spectrum of the a3 CUB centre and diminishes the rate of electron transfer between cytochrome a and the binuclear centre.
Resumo:
The mechanism whereby cytochrome £ oxidase catalyses elec-. tron transfer from cytochrome £ to oxygen remains an unsolved problem. Polarographic and spectrophotometric activity measurements of purified, particulate and soluble forms of beef heart mitochondrial cytochrome c oxidase presented in this thesis confirm the following characteristics of the steady-state kinetics with respect to cytochrome £: (1) oxidation of ferrocytochrome c is first order under all conditions. -(2) The relationship between sustrate concentration and velocity is of the Michaelis-Menten type over a limited range of substrate. concentrations at high ionic strength. (3) ~he reaction rate is independent from oxygen concentration until very low levels of oxygen. (4) "Biphasic" kinetic plots of enzyme activity as a function of substrate concentration are found when the range of cytochrome c concentrations is extended; the biphasicity ~ is more apparent in low ionic strength buffer. These results imply two binding sites for cytochrome £ on the oxidase; one of high affinity and one of low affinity with Km values of 1.0 pM and 3.0 pM, respectively, under low ionic strength conditions. (5) Inhibition of the enzymic rate by azide is non-c~mpetitive with respect to cytochrome £ under all conditions indicating an internal electron transfer step, and not binding or dissociation of £ from the enzyme is rate limiting. The "tight" binding of cytochrome '£ to cytochrome c oxidase is confirmed in column chromatographic experiments. The complex has a cytochrome £:oxidase ratio of 1.0 and is dissociated in media of high ionic strength. Stopped-flow spectrophotometric studies of the reduction of equimolar mixtures and complexes of cytochrome c and the oxidase were initiated in an attempt to assess the functional relevance of such a complex. Two alternative routes -for reduction of the oxidase, under conditions where the predominant species is the £ - aa3 complex, are postulated; (i) electron transfer via tightly bound cytochrome £, (ii) electron transfer via a small population of free cytochrome c interacting at the "loose" binding site implied from kinetic studies. It is impossible to conclude, based on the results obtained, which path is responsible for the reduction of cytochrome a. The rate of reduction by various reductants of free cytochrome £ in high and low ionic strength and of cytochrome £ electrostatically bound to cytochrome oxidase was investigated. Ascorbate, a negatively charged reagent, reduces free cytochrome £ with a rate constant dependent on ionic strength, whereas neutral reagents TMPD and DAD were relatively unaffected by ionic strength in their reduction of cytochrome c. The zwitterion cysteine behaved similarly to uncharged reductants DAD and TI~PD in exhibiting only a marginal response to ionic strength. Ascorbate reduces bound cytochrome £ only slowly, but DAD and TMPD reduce bound cytochrome £ rapidly. Reduction of cytochrome £ by DAD and TMPD in the £ - aa3 complex was enhanced lO-fold over DAD reduction of free £ and 4-fold over TMPD reduction of free c. Thus, the importance of ionic strength on the reactivity of cytochrome £ was observed with the general conclusion being that on the cytochrome £ molecule areas for anion (ie. phosphate) binding, ascorbate reduction and complexation to the oxidase overlap. The increased reducibility for bound cytochrome £ by reductants DAD and TMPD supports a suggested conformational change of electrostatically bound c compare.d to free .£. In addition, analysis of electron distribution between cytochromes £ and a in the complex suggest that the midpotential of cytochrome ~ changes with the redox state of the oxidase. Such evidence supports models of the oxidase which suggest interactions within the enzyme (or c - enzyme complex) result in altered midpoint potentials of the redox centers.
Resumo:
Increasing citrate concentration, at constant ionic strength (30 mM) decreases the rate of cytochrome ~ reduction by ascorbate. This effect is also seen at both high (600 mM) and low (19 mM) ionic strengths, and the Kapp for citrate increases with increasing ionic strength. Citrate binds d both ferri -and ferrocytochrome ~, but with a lower affinity for the latter form (Kox . .red d = 2 mM, Kd = 8 mM) as shown by an equilibrium assay with N,N,N',N', Tetramethyl E- phenylenediamine. The reaction of ferricytochrome ~with cyanide is also altered in the presence of citrate: citrate increases the K~PP for cyanide. Column chromatography of cytochrome ~-cytochrome oxidase mixtures shows citrate increases the dissociation constant of the complex. These results are confirmed in kinetic assays for the "loose"site (Km = 20 pM) only. The effect of increasing citrate observable at the "tight" site (Km = 0.25 pM) is on the turnover number and not on the K . These results suggest a mechanism m where anion binding to cytochrome £ at the tight site affects the equilibrium between two forms of cytochrome c bound cytochrome oxidase: an active and an inactive one.
Resumo:
A strain of Drosophila melanogaster (mid america stock culture no. hl16) has been reported to be deficient in aldehyde oxidase activity (Hickey and Singh 1982). This strain was characterized during the course of this study and compared to other mutant strains known to be deficient in aldehyde oxidase activity. During the course of this investigation, the hl16 strain was found to be temperature sensitive in its viability. It was found that the two phenotypes, the enzyme deficiency, and the temperature sensitive lethality were the result of two different mutations, both mapping to the X-chromosome. These two mutations were found to be separable by recombination. The enzyme deficiency was found to map to the same locus as the cinnamon mutation, another mutation which affects aldehyde oxidase production. The developmental profile of aldehyde oxidase in the hl16 strain was compared to the developmental profile in the Canton S wild type strain. The aldehyde oxidase activity in adult hl16 individuals was also compared to that of various other strains. It was also found that the aldehyde oxidase activity was temperature sensitive in the adult flies. The temperature sensitive lethality mutation was mapped to position 1-0.1.
Resumo:
Studies on the steady state behavior of soluble cytochrome c oxidase are extensive. These studies have examined the influence of ionic strength and pH and may provide answers to questions such as the link between proton translocation and charge separation. The present study examined the influence of external bulk pH on ApH formation, biphasic kinetics, and steady state reduction of cytochromes c and a of cytochrome c oxidase in proteoliposomes. Bulk pH has an appreciable effect on ApH formation and steady state reduction levels of cytochromes c and 8. Bulk pH affected total Vmax and Km at the low affinity binding site of cytochrome c. This study also examined the influence of bovine serum albumin and free fatty acids on proton pumping activity in bovine heart proteoliposomes. Proton pumping activity decreased after treatment with BSA, and was subsequently reinstated after further treatment with FFA. Much study in the superfamily of haem/copper oxidases has recently been devoted to the bacterial oxidases. The present study has examined some protein composition characteristics and bioenergetic features of Bacillus subtilis cytochrome caa3 oxidase. Results provide evidence for the structural composition of the enzyme in relation to the covalently bound cytochrome c to the oxidas~. Bioenergetically, caa3 COV showed appreciable proton pumping activity. Steady state analysis of the caa3 COV showed significantly different cytochrome c and a reduction characteristics compared to the bovine enzyme.
Resumo:
Cytochrome c oxidase .inserted into proteoliposomes translocates protons with a stoichiometry of approx-, imately 0.4-0.6 H+/e- in the presence of valinomycin plus pottasium. The existance .ofsuchproton translocation is .supportedby experiments with lauryl maltoside which abolished the pulses but~~d not inhibit cyt. c binding .or oxidase turnover. Pulses with K3FeCN6 did not induce acidification further supporting vectorial proton transport by cyt ..aa3 . Upon lowering the ionic strength and pulsing with ferrocytochrome c, H+/eratios increased. This increase is attributed to scaler proton release consequent upon cyt.c-phospholipid binding. Oxygen pulses at low ionic strength however did not exhibit this large scaler increase in H+/e- ratios.A-small increase was observed upon .02 pul'sing at·low ionic strengt.h. This increase was KeN and, ,pcep sensitive and thus possibly due to a redox linked scaler deprotonation. Increases in the H+/e- ratio also occurred ifp~lses ,were performed in the presence of nonactin rather.than valinomycin. The fluorescent pH indicator pyranine was internally trapped inaa3 conta~ning "proteoliposomes. Internal alkalinization, as mon,itored by pyranine fluorescence leads to a of approx.imately 0.35 units, which is proportional to electron flux. This internal alkalinization was also DCCD sensitive, being inhibited by approximately 50%. This 50% inhibition of internal alkalinization supports the existance of vectorial proton transport.
Resumo:
Two groups of rainbow trout were acclimated to 20 , 100 , and 18 o C. Plasma sodium, potassium, and chloride levels were determined for both. One group was employed in the estimation of branchial and renal (Na+-K+)-stimulated, (HC0 3-)-stimulated, and CMg++)-dependent ATPase activities, while the other was used in the measurement of carbonic anhydrase activity in the blood, gill and kidney. Assays were conducted using two incubation temperature schemes. One provided for incubation of all preparations at a common temperature of 2S oC, a value equivalent to the upper incipient lethal level for this species. In the other procedure the preparations were incubated at the appropriate acclimation temperature of the sampled fish. Trout were able to maintain plasma sodium and chloride levels essentially constant over the temperature range employed. The different incubation temperature protocols produced different levels of activity, and, in some cases, contrary trends with respect to acclimation temperature. This information was discussed in relation to previous work on gill and kidney. The standing-gradient flow hypothesis was discussed with reference to the structure of the chloride cell, known thermallyinduced changes in ion uptake, and the enzyme activities obtained in this study. Modifications of the model of gill lon uptake suggested by Maetz (1971) were proposed; high and low temperature models resulting. In short, ion transport at the gill at low temperatures appears to involve sodium and chloride 2 uptake by heteroionic exchange mechanisms working in association w.lth ca.rbonlc anhydrase. G.l ll ( Na + -K + ) -ATPase and erythrocyte carbonic anhydrase seem to provide the supplemental uptake required at higher temperatures. It appears that the kidney is prominent in ion transport at low temperatures while the gill is more important at high temperatures. 3 Linear regression analyses involving weight, plasma ion levels, and enzyme activities indicated several trends, the most significant being the interrelationship observed between plasma sodium and chloride. This, and other data obtained in the study was considered in light of the theory that a link exists between plasma sodium and chloride regulatory mechanisms.
Resumo:
It has previously been recognized that the major biochemical toxicity induced by sulphide is due to an inhibition of cytochrome ~ oxidase. Inhibition of this enzyme occurs at 30°C and pH 7.4 with a Ki of approximately 0.2 ~M, and a kon of 104 M-1 s-l, under catalytic conditions. However, the equimo1ar mixture of sulphide and the enzyme shows identical catalytic behaviour to that of the native enzyme. This cannot readily be attributed to rapid dissociation of sulphide, as both spectroscopic and plot analysis indicate the koff value is low. The addition of stoichiometric sulphide to the resting oxidized enzyme gives rise to the appearance of a low-spin ferric-type spectrum not identical with that seen on the addition of excess sulphide to the enzyme aerobically. Sulphide added to the enzyme anaerobically gives rise to another low-spin, probably largely ferric, form which upon admission of oxygen is then converted into a 607 nm species closely resembling Compound C. The 607 nm form is probably the precursor of oxyferricytochrome aa3. The addition of successive a1iquots of Na2S solution to the enzyme induces initial uptake of approximately 3 moles of oxygen per mole of the enzyme. Thus, it is concluded that: 1. the initial product of sulphide-cytochrome c oxidase interaction is not an inhibited form of the enzyme, but the low-spin (oxyferri) ~3+~+ species; 2. a subsequent step in which sulphide reduces cytochrome ~ occurs; 3. the final inhibitory step, in which a further molecule of sulphide binds to the cytochrome ~ iron centre in the cytochrome ~2+~+ species, gives the cytochrome a2+~+-H2S form which is a half-reduced fully inhibited species;4. a 607 run form of the enzyme is produced which may be converted into a catalytically active low-spin (oxyferri) state; and therefore 5. liganded sulphide may be able to reduce the cytochrome 33 -Cu centre without securing the prior reduction of the cytochrome a_ haem group or the Cud centre associated with it.
Resumo:
Agaricus bisporus is the most commonly cultivated mushroom in North America and has a great economic value. Green mould is a serious disease of A. bisporus and causes major reductions in mushroom crop production. The causative agent of green mould disease in North America was identified as Trichoderma aggressivum f. aggressivum. Variations in the disease resistance have been shown in the different commercial mushroom strains. The purpose of this study is to continue investigations of the interactions between T. aggressivum and A. bisporus during the development of green mould disease. The main focus of the research was to study the roles of cell wall degrading enzymes in green mould disease resistance and pathogenesis. First, we tried to isolate and sequence the N-acetylglucosaminidase from A. bisporus to understand the defensive mechanism of mushroom against the disease. However, the lack of genomic and proteomic information of A. bisporus limited our efforts. Next, T. aggressivum cell wall degrading enzymes that are thought to attack Agaricus and mediate the disease development were examined. The three cell wall degrading enzymes genes, encoding endochitinase (ech42), glucanase (fJ-1,3 glucanase) and protease (prb 1), were isolated and sequenced from T. aggressivum f. aggressivum. The sequence data showed significant homology with the corresponding genes from other fungi including Trichoderma species. The transcription levels of the three T. aggressivum cell wall degrading enzymes were studied during the in vitro co-cultivation with A. bisporus using R T -qPCR. The transcription levels of the three genes were significantly upregulated compared to the solitary culture levels but were upregulated to a lesser extent in co-cultivation with a resistant strain of A. bisporus than with a sensitive strain. An Agrobacterium tumefaciens transformation system was developed for T. aggressivum and was used to transform three silencing plasmids to construct three new T. aggressivum phenotypes, each with a silenced cell wall degrading enzyme. The silencing efficiency was determined by RT-qPCR during the individual in vitro cocultivation of each of the new phenotypes with A. bisporus. The results showed that the expression of the three enzymes was significantly decreased during the in vitro cocultivation when compared with the wild type. The phenotypes were co-cultivated with A. bisporus on compost with monitoring the green mould disease progression. The data indicated that prbi and ech42 genes is more important in disease progression than the p- 1,3 glucanase gene. Finally, the present study emphasises the role of the three cell wall degrading enzymes in green mould disease infection and may provide a promising tool for disease management.
Resumo:
In animals, both stress resistance and longevity appear to be influenced by the insulin/insulin-like growth factor-l signaling (lIS) pathway, the basic organization of which is highly conserved from invertebrates to vertebrates. Reduced lIS or genetic disruption of the lIS pathway leads to the activation of forkhead box transcription factors, which is thought to upregulate the expression of genes involved in enhancing stress resistance, including perhaps key antioxidant enzymes as well as DNA repair enzymes. Enhanced antioxidant and DNA repair capacities may underlie the enhanced cellular stress resistance observed in long-lived animals, however little data is available that directly supports this idea. I used three. experimental approaches to test the association of intracellular antioxidant and DNA base excision repair (BER) capacities with stress resistance and longevity: (1) a comparison of multiple vertebrate endotherm species of varying body masses and longevities; (2) a comparison of long-lived Snell dwarf mice and their normallittermates; and (3) a comparison of hypometabolic animals undergoing hibernation or estivation with their active counterparts. The activities of the five major intracellular antioxidant enzymes as well as the two rate-limiting enzymes in the BER pathway, apurininc/apyrimidinic (AP) endonuclease and polymerase ~, were measured. These measurements were performed in one or more of the following: (1) cultured dermal fibroblasts; (2) brain tissue; (3) heart tissue; (4) liver tissue. My results indicate that antioxidant enzymes are not universally upregulated in association with enhanced stress resistance and longevity. I also did not find that BER enzyme activity was positively correlated with longevity, in an inter-species context, though there was evidence for enhanced BER in long-lived Snell dwarf mice. Thus, while there were instances in which enhanced antioxidant and BER enzyme activities were associated with increased stress resistance and/or longevity, this was not universally the case, indicating that other mechanisms must be involved. These results suggest the need to re-examine existing 'oxidative stress' hypotheses of longevity and probe further into the molecular physiology of longevity to discover its mechanistic basis.
Resumo:
The plant family Apocynaceae accumulates thousands of monoterpene indole alkaloids (MIAs) which originate, biosynthetically, from the common secoiridoid intermediate, strictosidine, that is formed from the condensation of tryptophan and secologanin molecules. MIAs demonstrate remarkable structural diversity and have pharmaceutically valuable biological activities. For example; a subunit of the potent anti-neoplastic molecules vincristine and vinblastine is the aspidosperma alkaloid, vindoline. Vindoline accumulates to trace levels under natural conditions. Research programs have determined that there is significant developmental and light regulation involved in the biosynthesis of this MIA. Furthermore, the biosynthetic pathway leading to vindoline is split among at least five independent cell types. Little is known of how intermediates are shuttled between these cell types. The late stage events in vindoline biosynthesis involve six enzymatic steps from tabersonine. The fourth biochemical step, in this pathway, is an indole N-methylation performed by a recently identified N-methyltransfearse (NMT). For almost twenty years the gene encoding this NMT had eluded discovery; however, in 2010 Liscombe et al. reported the identification of a γ-tocopherol C-methyltransferase homologue capable of indole N-methylating 2,3-dihydrotabersonine and Virus Induced Gene Silencing (VIGS) suppression of the messenger has since proven its involvement in vindoline biosynthesis. Recent large scale sequencing initiatives, performed on non-model medicinal plant transcriptomes, has permitted identification of candidate genes, presumably involved, in MIA biosynthesis never seen before in plant specialized metabolism research. Probing the transcriptome assemblies of Catharanthus roseus (L.)G.Don, Vinca minor L., Rauwolfia serpentine (L.)Benth ex Kurz, Tabernaemontana elegans, and Amsonia hubrichtii, with the nucleotide sequence of the N-methyltransferase involved in vindoline biosynthesis, revealed eight new homologous methyltransferases. This thesis describes the identification, molecular cloning, recombinant expression and biochemical characterization of two picrinine NMTs, one from V. minor and one from R. serpentina, a perivine NMT from C. roseus, and an ajmaline NMT from R. serpentina. While these TLMTs were expressed and functional in planta, they were active at relatively low levels and their N-methylated alkaloid products were not apparent our from alkaloid isolates of the plants. It appears that, for the most part, these TLMTs, participate in apparently silent biochemical pathways, awaiting the appropriate developmental and environmental cues for activity.
Resumo:
The maximum lifespan (MLSP) of endothermic vertebrates can range from as little as a year to over two centuries, yet the underlying phenotype of aging is very similar amongst this group of organisms. One organelle that may be important in the phenotype of aging is the mitochondrion. When damaged, this organelle is thought to contribute to many of the neurodegenerative diseases of aging. For this thesis, mitochondria from brain tissues of 7 mammalian and 2 avian species were isolated to assess whether the antioxidant glutathione system and major molecular chaperone, HSP60, is correlated to species MLSP. Furthermore, HSP60, and the major endoplasmic reticulum chaperone, GRP78, were measured under basal conditions, and following the introduction of an oxidative stress (hydrogen peroxide) in cultured mammalian myoblasts from 10 different species. My results indicate that the enzymes involved in the glutathione defense system are not correlated to species MLSP in brain mitochondria; however HSP60 levels are indeed higher in the longer-lived species. HSP60 levels are also higher at the basal level in cultured mammalian myoblasts and after 1 hour of hydrogen peroxide exposure. GRP78 induction is not correlated to species MLSP at the basal level or following hydrogen peroxide exposure. Therefore, these results suggest that HSP60 is a correlate of longevity in endothermic vertebrate species, but neither the glutathione antioxidant defense system, nor GRP78, correlates to species longevity.
Resumo:
The exact mechanistic understanding of various organocatalytic systems in asymmetric reactions such as Henry and aza-Henry transformations is important for developing and designing new synthetic organocatalysts. The focus of this dissertation will be on the use of density functional theory (DFT) for studying the asymmetric aza-Henry reaction. The first part of the thesis is a detailed mechanistic investigation of a poorly understood chiral bis(amidine) (BAM) Brønsted acid catalyzed aza-Henry reaction between nitromethane and N-Boc phenylaldimine. The catalyst, in addition to acting as a Brønsted base, serves to simultaneously activate both the electrophile and the nucleophile through dual H-bonding during C-C bond formation and is thus essential for both reaction rate and selectivity. Analysis of the H-bonding interactions revealed that there was a strong preference for the formation of a homonuclear positive charge-assisted H-bond, which in turn governed the relative orientation of substrate binding. Attracted by this well-defined mechanistic investigation, the other important aspect of my PhD research addressed a detailed theoretical analysis accounting for the observed selectivity in diastereoselective versions of this reaction. A detailed inspection of the stereodetermining C-C bond forming transition states for monoalkylated nitronate addition to a range of electronically different aldimines, revealed that the origins of stereoselectivity were controlled by a delicate balance of different factors such as steric, orbital interactions, and the extent of distortion in the catalyst and substrates. The structural analysis of different substituted transition states established an interesting dependency on matching the shape and size of the catalyst (host molecule) and substrates (guest molecules) upon binding, both being key factors governing selectivity, in essence, offering an analogy to positive cooperative binding effect of catalytic enzymes and substrates in Nature. In addition, both intra-molecular (intra-host) and inter-molecular (host-guest, guest-guest) stabilizing interactions play a key role to the high π-facial selectivity. The application of dispersion-corrected functionals (i.e., ωB97X-D and B3LYP-D3) was essential for accurately modeling these stabilizing interactions, indicating the importance of dispersion effects in enantioselectivity. As a brief prelude to more extensive future studies, the influence of a triflate counterion on both reactivity and selectivity in this reaction was also addressed.