1 resultado para Overweight women

em Brock University, Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the last two decades, the prevalence of obesity in the general population has been steadily increasing. Obesity is a major issue in scientific research because it is associated with many health problems, one of which is bone quality. In adult females, adiposity is associated with increased bone mineral density, suggesting that there is a protective effect of fat on bone. However, the association between adiposity and bone strength during childhood is not clear. Thus, the purpose of this study was to compare bone strength, as reflected by speed of sound (SOS), of overweight and obese girls and adolescents with normal-weight age-matched controls. Data from 75 females included normal-weight girls (G-NW; body fat:::; 25%; n = 21), overweight and obese girls (GOW; body fat ~ 28%; n = 19), normal-weight adolescents (A-NW, body fat:::; 25%; n = 13) and overweight and obese adolescents (A-OW; body fat ~ 28%; n = 22). Nutrition was assessed with a 24-hour recall questionnaire and habitual physical activity was measured for one week using accelerometry. Using quantitative ultrasound (QUS; Sunlight Omnisense™), bone SOS was measured at the distal radius and mid-tibia. No differences were found between groups in daily total energy, calcium or vitamin D intake. However, all groups were below the recommended daily calcium intake of 1300 mg (Osteoporosis Canada, 2008). Adolescents were significantly less active than girls (14.7 ± 0.6 vs. 6.3 ± 0.6% active for G and A, respectively). OW accumulated significantly less minutes of moderate-to-very vigorous physical activity per day (MVPA) than NW in both age groups (114 ± 6 vs. 57 ± 5 min/day for NW and OW, i respectively). Girls had significantly lower radial SOS (3794 ± 87 vs. 3964 ± 64 mls for G-NW and A-NW, respectively), and tibial SOS (3678 ± 86 vs. 3878 ± 52 mls for G-NW and A-NW, respectively) than adolescents. Radial SOS was similar in the two adiposity groups within each age group. However, tibial SOS was lower in the two overweight groups (3601 ± 75 mls vs. 3739 ± 134 mls for G-OW and A-OW, respectively) compared with the age-matched normal-weight controls. Body fat percentage negatively correlated with tibial SOS in the study sample as a whole (r = -0.30). However, when split into groups, percent bo~y fat correlated with tibial SOS only in the A-OW group (r = -0.53). MVPA correlated with tibial SOS (r = 0.40), once age was partialed out. In conclusion, in contrast withthe higher bone strength characteristic of obese adult women, overweight and obese girls and adolescents are characterized by low tibial bone strength, as assessed with QUS. The differences between adiposity groups in tibial SOS may be at least partially due to the reduced weight-bearing physical activity levels in the overweight girls and adolescents. However, other factors, such as hormonal influences associated with high body fat may also playa role in reducing bone strength in overweight girls. Further research is required to reveal the mechanisms causing low bone strength in overweight and obese children and adolescents.