8 resultados para Organic reaction mechanisms

em Brock University, Canada


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reactions of the boron halides with organic halides and organo-silicon compounds have been investigated. The results show exchange of halogens between the BX3 (X = Br# 1) and the organic halidef exchange of the halogen of the C-X bond being proved. The rates of halogen exchange vary. Reaction of the heavier halides with organo-silicon compounds indicated that the silicon-carbon bonds ruptured in the absence of electronegative atom attached to the silicon. The presence of an electronegative atom (halogen or oxygen) attached to the silicon causes the bond between the silicon and the electronegative atom to be preferentially broken. Products of exchange reactions of the boron halides and the organic halides or the organo-silicon compounds were studied by use of 1H NMR and GC/MS. From these results some possible mechanisms for the exchange reactions are postulated, but further work is indicated to prove the real courses of the reactions

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Reactions of 5,6- and 4,5-epoxycholestane derivatives with strong bases were investigated. Epoxidation of 3a-acetoxycholest-5-ene also gave a new compound along with the anticipated epoxides. Interconversions of the latter were observed. Some possible mechanisms of its formation and rearrangements have been pIioposed. No reaction was observed with any of the 5,6- and 4,5-steroidal epoxides employed in the present study, using potassium tertiary butoxide under refluxing conditions. n-Butyllithium reacted only with 5,6-epoxycholestanes bearing a ketal moiety at the C3 carbon. Opening of the ketal group was observed with n-butyllithium in the case of a ~-epoxide. The reaction was also investigated in the absence of epoxide functionality. A possible mechanism for the opening of ketal group has been proposed. Lithium diethylamide (LDEA) was found effective in rearranging 5,6- and 4,5-epoxides to their ~orresponding allylic alcohols. These rearrangements presumably proceed via syn-eliminations, however the possibility of a corresponding anti-elimination has not been eliminated. A substituent effect of various functional groups (R = H, OH, OCH2CH20) at C3 has-been observed on product distribution in the LDEApromoted rearrangements of the corresponding epoxides. No reaction of these epoxides was observed with lithium diisopropylamide (LDA) • In the second part of the project, several attempts were made towards the sYRthesis of deoxycorticoste~one~17,2l,2l~d3' a compound desirable for the 2l-dehydroxylation studies of deoxycorticosterone. Several routes were investigated, and some deuterium labelled pregnane derivatives were prepared in this regard. Microbial 21-hydroxylation of progesteronel7,21,21,2l- d4 by ~ niger led to loss of deuterium from C21 of the product. An effort was made to hydroxylate progesterone microbially under neutral condtions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent studies have shown that the rhodium (II) acetate decomposition chemistry observed for a-diazoketones tethered to thienyl, furanyl, and benzofuranyl moieties is dependent not only on the nature of the heteroatom but also on the length of the aliphatic tether linking the diazoketone moiety with the aromatic fragment. The present thesis expands on these results and focuses on a-diazoketones tethered to benzothiophenes, pyrroles and indoles by a methylene linker. In the case of benzothiophenes, it was shown that the rhodium catalyst decomposition of I-diazo-4-(3-benzothienyl)-2-butanone (146) and 1-diazo-4-(3benzothienyl)- 2-butanone (152) allow for the isolation of 1,2,3a,3b-tetrahydro-3Hbenzo[ b]cyclopenta[1,3]cyclopropa- [1 ,2-d]thiophen-3-one (147) and 1,2,3a,3btetrahydro- 3H-benzo[b]cyclopenta[1,3]cyclopropa[1,2-d]thiophen-3-one (153). However treatment of 1-diazo-3-(3-Benzothienyl)-2-Propanone (165) with Rh(II) acetate results in the formation of 2,3-Dihydro-1H-benzo[b]cyclopenta[d]thiophen-2-one (159), while 1diazo- 3-(2-Benzothienyl)-2-Propanone with the same condition gives 5,5-bis( 1benzothiophen- 2-ylmethyl)-2(5H)-furanone (166) along with the tricycle 159. The chemistry of the pyrrolyl and the indolyl moieties linked to terminal adiazoketone systems was also investigated. The decomposition of I-diazo-(2-pyrrolyl)-2propanone (173) results in the formation of two products; the N-H insertion product IHpyrrolizin- 2(3H)-one (176) and the alkylation product 4,6-dihydrocyclopenta[b]pyrrol5( 1 H)-one (180). When 1-Diazo-3-(3-indoly)-3-propanone (194) is treated with catalytic amount of Rh (II) 3,4-dihydrocyclopenta[b]indol-2(1H)-one (193) is isolated quantitatively. The later reaction when monitored using IH NMR the intermediate 200 can be seen whose structure was confirmed by the comparison to series of model compounds. The mechanisms underlying these reactions as well as their synthetic utility is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research was focussed on the effects of light, solvent and substituents in the molybdenum-catalyzed oxidation of phenylmethyl sulfides with t-Bu02H and on the effect of light in the molybdenum-catalyzed epoxidation of l-octene with t-Bu02H. It was shown that the Mo(CO)6-catalyzed oxidation of phenylmethyl sulfide with t-Bu02H~ at 35°C, proceeds 278 times faster underUV light than under laboratory lighting, whereas the Mo02(acac)2-catalyzed oxidation proceeds only 1.7 times faster under UV light than under normal laboratory lighting. The difference between the activities of both catalysts was explained by the formation of the catalytically active species, Mo(VI). The formation of the Mo(VI) species, from Mo(CO)6 was observed from the IR spectrum of Mo(CO)6 in the carbonyl region. The Mo(CO)6-catalyzed epoxidation of l-octene with t-Bu02H showed that the reaction proceeded 4.6 times faster under UV light than in the dark or under normal laboratory lighting; the rates of epoxidations were found to be the same in the dark and under normal laboratory lighting. The kinetics of the epoxidations of l-octene with t-Bu02H, catalyzed by Mo02(acac)2 were found to be complicated; after fast initial rates, the epoxidation rates decreased with time. The effect of phenylmethyl sulfide on the Mo(CO)6-catalyzed epoxidation of l-octene waS studied. It was shown that instead of phenylmethyl sulfide, phenylmethyl sulfone, which formed rapidly at 85°C, lowered the reaction rate. The epoxidation of l-octene was found to be 2.5 times faster in benzene than in ethanol. The substituent effect on the Mo02(acac)2-catalyzed oxidations of p-OH, p-CHgO, P-CH3' p-H, p-Cl, p-Br, p-CHgCO, p-HCO and P-N02 substituted phenylmethyl sulfides were studied. The oxidations followed second order kinetics for each case; first order dependency on catalyst concentration was also observed in the oxidation of p-CHgOPhSMeand PhSMe. It was found that electron-donating groups on the para position of phenylmethyl sulfide increased the rate of reaction, while electronwithdrawing groups caused the reaction rate to decrease. The reaction constants 0 were determined by using 0, 0- and 0* constants. The rate effects were paralleled by the activation energies for oxidation. The decomposition of t-Bu02H in the presence of M.o (CO)6, Mo02 (acac)2 and VO(acac)2 was studied. The rates of decomposition were found to be very small compared to the oxidation rates at high concentration of catalysis. The relative rates of the Mo02(acac)2-catalyzed oxidation of p-N02PhSMe by t-Bu02H in the presence of either p-CH30PhSMe or PhSMe clearly show that PhSMe and p-CHgOPhSMe act as co-catalysts in the oxidation of p-N02PhSMe. Benzene, mesity1ene and cyclohexane were used to determine the effect of solvent in the Mo02 (acac)2 and Mo(CO)6-catalyzed oxidation of phenylmethyl sulfide. The results showed that in the absence of hydroxylic solvent, a second molecule of t-Bu02H was involved in the transition state. The complexation of the solvent with the catalyst could not be explained.The oxidations of diphenyl sulfoxide catalyzed by VO(acac)2, Mo(CO)6 and Mo02(acac)2 showed that VO(acac)2 catalyzed the oxidation faster than Mo(CO)6 and Mo02 (acac)2_ Moreover, the Mo(CO)6-catalyzed oxidation of diphenyl sulfoxide proceeded under UV light at 35°C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The preparation of phenacyl and para-phenylphenacyl esters, the reactions of carboxylic acids, phenols, 2-nitropropane and alcohols with alkyl halides in the presence of fluoride anion are described. The reactions are thought to be accelerated by the formation of hydrogen bonds between the fluoride anion and the organic electron acceptor. The fluoride ,carboxylic acids, fluoride-phenols and fluoride-2-nitropropane are better reaction systems than the fluoride-alcohol. The source of the fluoride anion and the choice of solvents are also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the most challenging tasks for a synthetic organic chemist today, is the development of chemo, regio, and stereoselective methodologies toward the total synthesis of macromolecules. r . The objective of my thesis was to develop methodologies towards this end. The first part of my project was to develop highly functionalized chirons from D-glucose, a cheap, chiral starting material, to be utilized in this capacity. The second part of the project dealt with modifying the carbon-carbon bond forming Suzuki reaction, which is utilized quite often as a means of combining molecular sub units in total synthesis applications. As previously stated the first area of the project was to develop high value chirons from D-glucose, but the mechanism of their formation was also investigated. The free radical initiated oxidative fragmentation of benzylidene acetals was investigated through the use of several test-case substrates in order to unravel the possible mechanistic pathways. This was performed by reacting the different acetals with N-bromosuccinimide and benzoyl peroxide in chlorobenzene at 70^C in all cases. Of the three mechanistic pathways discussed in the literature, it was determined, from the various reaction products obtained, that the fragmentation of the initial benzylic radical does not occur spontaneously but rather, oxidation proceeds to give the benzyl bromide, which then fragments via a polar pathway. It was also discovered that the regioselectivity of the fragmentation step could be altered through incorporation of an allylic system into the benzylidene acetal. This allows for the acquisition of a new set of densely functionalized. chiral, valuable synthetic intermediates in only a few steps and in high yields from a-Dglucose. The second part of the project was the utilization of the phosphonium salt room temperature ionic liquid tetradecyltrihexylphosphonium chloride (THPC) as an efficient reusable medium for the palladium catalyzed Suzuki cross-coupling reaction of aryl halides, including aryl chlorides, under mild conditions. The cross-coupling reactions were found to proceed in THPC containing small amounts of water and toluene using potassium phosphate and 1% Pd2(dba)3. Variously substituted iodobenzenes, including electron rich derivatives, reacted efficiently in THPC with a variety of arylboronic acids and afforded complete conversion within 1 hour at 50 ^C. The corresponding aryl bromides also reacted under these conditions with the addition of a catalytic amount of triphenylphosphine that allowed for complete conversion and high isolated yields. The reactions involving aryl chlorides were considerably slower, although the addition of triphenylphosphine and heating at 70 ^C allowed high conversion of electron deficient derivatives. Addition of water and hexane to the reaction products results in a triphasic system in which the top hexane phase contained the biaryl products, the palladium catalyst remained fully dissolved in the central THPC layer, while the inorganic salts were extracted into the lower aqueous phase. The catalyst was then recycled by removing the top and bottom layers and adding the reagents to the ionic liquid which was heated again at 50 ^C; resulting in complete turnover of iodobenzene. Repetition of this procedure gave the biphenyl product in 82-97% yield (repeated five times) for both the initial and recycled reaction sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Toluene is converted to benzyl alcohol by the fungi Mortierella isabellina and Helminthosporium species; in the latter case, the product is further metabolized. Toluene-a -d 1 , toluene-a,a-d2, and toluene-a,a,a-d 3 have been used with Mortierellaisabellina in a series of experiments to determine both primary and secondary deuterium kinetic isotope effects for the enzymic benzylic hydroxylation reaction. The values obtained, intermolecular primary kH/kD = intramolecular p rim a r y kH r kD = 1. 0 2 + O. 0 5, and sec 0 n dar y k H I kD = 1. 37 .:!. 0.05, suggest a mechanism for the reaction involving benzylic proton removal from a radical intermediate in a non-symmetrical transition state. 2H NMR (30.7 MHz) studies using ethylbenzene-l,1-d 2 , 3 -fluoroethylbenzene-l,1-d 2 , 4 -fluoroethylbenzene-l,1-d 2 , and toluene-dB as substrates with Mortierella isabellina suggest, based on the observable differences in rates of conversion between the substrates, that the hydroxylation of hydrocarbons at the benzylic position proceeds via a one electron abstraction from the aromatic ring, giving a radical cation. A series of 1,3-oxathiolanes (eight) were incubated with Mortierella isabellina , Helminthosporium , Rhizopus arrhizus , and Aspergillus niger . Sulphoxides were obtained from Mortierella isabellina and Rhizopus arrhizus using the substrates 2-phenyl-, 2-methyl-2-phenyl-, and 2-phenyl-2-tert. butyl-l,3-oxathiolane. The relative stereochemistry of 2-methyl-2-phenyl-l,3-oxathiolan-l-oxide was assigned based on lH decoupling, n.O.e, 1 and H NMR experiments. The lH NMR (200 MHz) of the methylene protons of 2-methyl-2-phenyl-l,3-oxathiolan-l-oxide was used as a diagnostic standard in assigning the relative stereochemistry of 2-phenyl-l,3-oxathiolan-l-oxide and 2-phenyl-2-tert. butyl-l,3-oxathiolan-l-oxide. The sulphoxides obtained were consistent with an oxidation occurring from the opposite side of the molecule to the phenyl substituent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rates and products of the oxidation of diphenyl sulfide, phenyl methyl sulfide, p-chlorophenyl methyl sulfide and diphenyl sulfoxide have been determined. Oxidants included t-Bu02H alone, t-Bu02H plus molybdenum or vanadium catalysts and the molybdenum peroxo complex Mo0(02)2*HMPT. Reactions were chiefly carried out in ethanol at temperatures ranging from 20° to 65°C. Oxidation of diphenyl sulfide by t-Bu02H in absolute ethanol at 65°C followed second-order kinetics with k2 = 5.61 x 10 G M~1s"1, and yielded only diphenyl sulfoxide. The Mo(C0)g-catalyzed reaction gave both the sulfoxide and the sulfone with consecutive third-order kinetics. Rate = k3[Mo][t-Bu02H][Ph2S] + k^[Mo][t-Bu02H][Ph2S0], where log k3 = 12.62 - 18500/RT, and log k^ = 10.73 - 17400/RT. In the absence of diphenyl sulfide, diphenyl sulfoxide did not react with t-Bu02H plus molybdenum catalysts, but was oxidized by t-Bu02H-V0(acac)2. The uncatalyzed oxidation of phenyl methyl sulfide by t-Bu02H in absolute ethanol at 65°C gave a second-order rate constant, k = 3.48 x 10~"5 M^s""1. With added Mo(C0)g, the product was mainly phenyl methyl sulfoxide; Rate = k3[Mo][t-Bu02H][PhSCH3] where log k3 = 22.0 - 44500/RT. Both diphenyl sulfide and diphenyl sulfoxide react readily with the molybdenum peroxy complex, Mo0(02)2'HMPT in absolute ethanol at 35°C, yielding diphenyl sulfone. The observed features are mainly in agreement with the literature on metal ion-catalyzed oxidations of organic compounds by hydroperoxides. These indicate the formation of an active catalyst and the complexation of t-Bu02H with the catalyst. However, the relatively large difference between the activation energies for diphenyl sulfide and phenyl methyl sulfide, and the non-reactivity of diphenyl sulfoxide suggest the involvement of sulfide in the production of an active species.