2 resultados para Optical emission
em Brock University, Canada
Resumo:
Modifications to the commercial hydride generator, manufactured by Spectrametrics, resulted in improved operating procedure and enhancement of the arsenic and germanium signals. Experiments with arsenic(III) and arsenic(V) showed that identical reiults could be produced from both oxidation states. However, since arsenic(V) is reduced more slowly than arsenic(III), peak areas and not peak heights must be measured when the arsine is immediately stripped from the system (approximately 5 seconds reaction). When the reduction is allowed to proceed for 20 seconds before the arsine is stripped, peak heights may be used. For a 200 ng/mL solution, the relative standard deviation is 2.8% for As(III) and 3.8% for As(V). The detection limit for arsenic using the modified system is 0.50 ng/mL. Studies performed on As(V) standards show that the interferences from 1000 mg/L of nickel(II), cobalt(II), iron(III), copper(II), cadmium(II), and zinc(II) can be eliminated with the aid of 5 M Hel and 3% L-cystine. Conditions for the reduction of germanium to the corresponding hydride were investigated. The effect of different concentrations of HCl on the reduction of germanium to the covalent hydride in aqueous media by means of NaBH 4 solutions was assessed. Results show that the best response is accomplished at a pH of 1.7. The use of buffer solutions was similarly characterized. In both cases, results showed that the element is best reduced when the final pH of the solution after reaction is almost neutral. In addition, a more sensitive method, which includes the use of (NH4)2S208' has been developed. A 20% increase in the germanium signal is registered when compared to the signal achieved with Hel alone. Moreover, under these conditions, reduction of germanium could be accomplished, even when the solution's pH is neutral. For a 100 ng/mL germanium standard the rsd is 3%. The detection limit for germanium in 0.05 M Hel medium (pH 1.7) is 0.10 ng/mL and 0.09 ng/mL when ammonium persulphate is used in conjunction with Hel. Interferences from 1000 mg/L of iron(III), copper(II), cobalt(II), nickel(II), cadmium(II), lead(II), mercury(II), aluminum(III), tin(IV), arsenic(III), arsenic(V) and zinc(II) were studied and characterized. In this regard, the use of (NH4)ZS20S and Hel at a pH of 1.7 proved to be a successful mixture in the sbppression of the interferences caused by iron, copper, aluminum, tin, lead, and arsenic. The method was applied to the determination of germanium in cherts and iron ores. In addition, experiments with tin(IV) showed that a 15% increase in the tin signal can be accomplished in the presence of 1 mL of (NH4)2S20S 10% (m/V).
Resumo:
Microwave digestions of mercury in Standards Reference Material (SRM) coal samples with nitric acid and hydrogen peroxide in quartz vessels were compared with Teflon® vessel digestion by using flow injection cold vapor atomic absorption spectrometry. Teflon® vessels gave poor reproducibiUty and tended to deliver high values, while the digestion results from quartz vessel show good agreement with certificate values and better standard deviations. Trace level elements (Ag, Ba, Cd, Cr, Co, Cu, Fe, Mg, Mn, Mo, Pb, Sn, Ti, V and Zn) in used oil and residual oil samples were determined by inductively coupled plasma-optical emission spectrometry. Different microwave digestion programs were developed for each sample and most of the results are in good agreement with certified values. The disagreement with values for Ag was due to the precipitation of Ag in sample; while Sn, V and Zn values had good recoveries from the spike test, which suggests that these certified values might need to be reconsidered. Gold, silver, copper, cadmium, cobalt, nickel and zinc were determined by continuous hydride generation inductively coupled plasma-optical emission spectrometry. The performance of two sample introduction systems: MSIS™ and gas-liquid separator were compared. Under the respective optimum conditions, MSIS^"^ showed better sensitivity and lower detection limits for Ag, Cd, Cu, Co and similar values for Au, Ni and Zn to those for the gas-liquid separator.