2 resultados para Non-performing loan

em Brock University, Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Christopher Newton was born in England in June of 1936. He received his education at Sir Roger Manwood’s School in Kent, the University of Leeds, Purdue University in Indiana and the University of Illinois where he received his M.A. He founded Theatre Calgary in 1968 and was the artistic director there until 1971. He was appointed as the artistic director of the Vancouver Playhouse where he established the Playhouse Acting School with Powys Thomas. Mr. Newton has also performed and directed at Stratford Festivals and on Broadway. He became the artistic director at Shaw Festival in Niagara-on-the-Lake in 1979 and remained there for 23 seasons until 2002. Mr. Newton has many television, radio and film credits to his name as well as having written many stage plays. Mr. Newton has received honorary degrees from Brock University (1986), the University of Guelph (1989), Wilfrid Laurier University (1997) and Buffalo State University. He was made an Honorary Fellow at the Royal Conservatory of Music of Toronto (1993) and of Ryerson Polytechnic University (1995). He has won the Governor General’s performing arts award (2000), the Molson Prize and the Thomas DeGaetani Award from the United States Institute for Theatre Technology. In 1996 he was made an Honorary Life Member of the Association for Canadian Theatre Research and in the same year he received the M. Joan Chalmers Award for Artistic Direction. In 1995, he was made a Member of the Order of Canada and he won a Governor General's Performing Arts Award in 2000. Christopher Newton is currently the Artistic Director Emeritus at the Shaw Festival. Sources: http://www.shawfest.com/the-ensemble/christopher-newton/ http://www.thecanadianencyclopedia.com/articles/christopher-newton

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diatoms are renowned for their robust ability to perform NPQ (Non-Photochemical Quenching of chlorophyll fluorescence) as a dissipative response to heightened light stress on photosystem II, plausibly explaining their dominance over other algal groups in turbulent light environs. Their NPQ mechanism has been principally attributed to a xanthophyll cycle involving the lumenal pH regulated reversible de-epoxidation of diadinoxanthin. The principal goal of this dissertation is to reveal the physiological and physical origins and consequences of the NPQ response in diatoms during short-term transitions to excessive irradiation. The investigation involves diatom species from different originating light environs to highlight the diversity of diatom NPQ and to facilitate the detection of core mechanisms common among the diatoms as a group. A chiefly spectroscopic approach was used to investigate NPQ in diatom cells. Prime methodologies include: the real time monitoring of PSII excitation and de-excitation pathways via PAM fluorometry and pigment interconversion via transient absorbance measurements, the collection of cryogenic absorbance spectra to measure pigment energy levels, and the collection of cryogenic fluorescence spectra and room temperature picosecond time resolved fluorescence decay spectra to study excitation energy transfer and dissipation. Chemical inhibitors that target the trans-thylakoid pH gradient, the enzyme responsible for diadinoxanthin de-epoxidation, and photosynthetic electron flow were additionally used to experimentally manipulate the NPQ response. Multifaceted analyses of the NPQ responses from two previously un-photosynthetically characterised species, Nitzschia curvilineata and Navicula sp., were used to identify an excitation pressure relief ‘strategy’ for each species. Three key areas of NPQ were examined: (i) the NPQ activation/deactivation processes, (ii) how NPQ affects the collection, dissipation, and usage of absorbed light energy, and (iii) the interdependence of NPQ and photosynthetic electron flow. It was found that Nitzschia cells regulate excitation pressure via performing a high amplitude, reversible antenna based quenching which is dependent on the de-epoxidation of diadinoxanthin. In Navicula cells excitation pressure could be effectively regulated solely within the PSII reaction centre, whilst antenna based, diadinoxanthin de-epoxidation dependent quenching was implicated to be used as a supplemental, long-lasting source of excitation energy dissipation. These strategies for excitation balance were discussed in the context of resource partitioning under these species’ originating light climates. A more detailed investigation of the NPQ response in Nitzschia was used to develop a comprehensive model describing the mechanism for antenna centred non-photochemical quenching in this species. The experimental evidence was strongly supportive of a mechanism whereby: an acidic lumen triggers the diadinoxanthin de-epoxidation and protonation mediated aggregation of light harvesting complexes leading to the formation of quencher chlorophyll a-chlorophyll a dimers with short-lived excited states; quenching relaxes when a rise in lumen pH triggers the dispersal of light harvesting complex aggregates via deprotonation events and the input of diadinoxanthin. This model may also be applicable for describing antenna based NPQ in other diatom species.