5 resultados para Non-minimum phase systems
em Brock University, Canada
Resumo:
As Ca2+ and phosphatidylserine (PS) are known to induce the adhesion of bilayer vesicles and form collapsed multibilayer structures in vitro, it was the aim of this study to examine how that interaction and the resultant structures might be modified by neutral lipid species. X-ray diffraction data from multilamellar systems suggest that phosphatidylcholine (PC) and diacylglycerol (DG) might be in the collapsed phase up to a concentration of -30 mole % and that above this concentration these neutral lipids may modify Ca2+-induced bilayer interactions. Using large unilamellar vesicles and long incubations in excess Ca2+ to ensure equilibration, similar preliminary results were again obtained with PC, and also with phosphatidylethanolamine (PE). A combination of X-ray diffraction, thin-layer chromatography, density gradient centrifugation and freeze-fracture electron microscopy, used in conjunction with an osmotic stress technique, showed that (i) -30 mole % PC can be accomodated in the Ca(DOPS)2 phase; and (ii) higher PC levels modify Ca2+-induced bilayer interactions resulting in single lamellar phases of larger dimension and reduced tendency for REV collapse. Importantly, the data suggest that PC is dehydrated during the rapid collapse process leading. to Ca(DOPS)2 formation and exists with this dehydrated phase. Similar results were obtained using PS isolated from bovine brain. Preliminary studies using two different phosphatidylethanolamine (PE) species indicated accomodation by Ca(DOPS)2 of -25-30 mole 0/0 PE and bulk phase separation, of species favouring a non-bilayer phase, at higher levels. Significantly, all PS/PE vesicles appear to undergo a complete Ca2+-induced collapse, even with contents of up to 90 mole % PE. These data suggest that PE may have an important role in fusion mechanisms in vivo. In sum the data lend both structural and stoichiometric evidence for th~ existence of laterally segregated neutral lipid molecules within the same bilayers as PS domains exposed to Ca2+.
Resumo:
The objective of this thesis was to demonstrate the potential of fast atom bombardment mass spectrometry (FABMS) as a probe of condensed phase systems and its possible uses for the study of hydrogen bonding. FABMS was used to study three different systems. The first study was aimed at investigating the selectivity of the ligand tris(3,6-dioxaheptyl) amine (tdoha) for the alkali metal cations. FABMS results correlated well with infrared and nmr data. Systems where a crown ether competed with tdoha for a given alkali metal cation were also investigated by fast atom bombardment. The results were found to correlate with the cation affinity of tdoha and the ability of the crown ether to bind the cation. In the second and third studies, H-bonded systems were investigated. The imidazole-electron donor complexes were investigated and FABMS results showed the expected H-bond strength of the respective complexes. The effects of concentration, liquid matrix, water content, deuterium exchange, and pre-ionization of the complex were also investigated. In the third system investigated, the abundance of the diphenyl sulfone-ammonium salt complexes (presumably H-bonded) in the FABMS spectrum were found to correlate with qualitative considerations such as steric hindrance and strength of ion pairs.
Resumo:
In light of the fact that literature on toxicity of heavy metals in non-acidified
freshwater systems is sparse, this project was initiated to conduct an environmental
assessment of Lake Gibson. Chemistry of soils from adjacent areas and vineyards in the
region provide a comparative background database. Water quality determinations were used
to identify and highlight areas of environmental concern within the Lake Gibson watershed.
A Shelby Corer was used to obtain 66 sediment cores from Lake Gibson. These were
sectioned according to lithology and color to yield 298 samples. A suite of 122 soil samples
was collected in the region and vicinity of Lake Gibson. All were tested for metals and
some for Total Petroleum Hydrocarbons (TPH). Evaluation of the results leads to the
following conclusions:
1. Metal concentrations ofAI, Cd, Cu, Cr, Pb, Ni, Fe and Zn in soils from the Niagara
Region are well below background limits set by the Ministry of the Environment
and Energy (MOEE) for provincial soils.
2. There is a spatial and depth difference for some of the metals within the various
soils. The Cr, Ni and Pb contents of soils vary throughout the region (p
Resumo:
The biotransformation of water insoluble substrates by mammalian and bacterial cells has been problematic, since these whole cell reactions are primarily performed in an aqueous environment The implementation of a twophase or encapsulated system has the advantages of providing a low water system along with the physiological environment the cells require to sustain themselves. Encapsulation of mammalian cells by formation of polyamide capsules via interfacial polymerization illustrated that the cells could not survive this type of encapsulation process. Biotransformation of the steroid spironolactone [3] by human kidney carcinoma cells was performed in a substrate-encapsulated system, yielding canrenone [4] in 70% yield. Encapsulation of nitrile-metabolizing Rhodococcus rhodochrous cells using a polyamide membrane yielded leaky capsules, but biotransformation of 2-(4- chlorophenyl)-3-methylbutyronitrile (CPIN) [6] in a free cell system yielded CPIN amide [7] in 40% yield and 94% ee. A two-phase biotransformation of CPIN consisting of a 5:1 ratio of tris buffer, pH 7.2 to octane respectively, gave CPIN acid [8] in 30% yield and 97% ee. It was concluded that Rhodococcus rhodochrous ATCC 17895 contained a nonselective nitrile hydratase and a highly selective amidase enzyme.
Resumo:
The formation and the isolation of fluoroboron salts, (D2BF2+)(PF6-), (DD'BF2+)(PF6-) and (D3BF2+)(PF6-)2, have been carried out. 1,8-Diazabicyclo [5,4.0]undec-7-ene (DBU) and 1,5-diazabicyclo[4,3,O]non-5-ene (DBN), extremely strong organic bases, were introduced into the fluoroboron cation systems and induced a complicated redistribution reaction in the D/BF3/BC13 systems. The result was the formation of all BFnCI4-n-, D.BFnCI3-n and fluoroboron cation species which were detected by 19p and 11B NMR spectrometry. The displacement reaction of CI- from these D.BFnCI3-n (n = 1 and 2) species by the second entering ligand is much faster than in other nitrogen donor containing systems which have been previously studied. Tetramethylguanidine, oxazolines and thiazolines can also produce similar reactions in D/BF3/BCI3 systems, but no significant BFnC4-n- species were observed. As well as influences of their basicity and their steric hindrance, N=C-R(X) (X = N, 0 or S) and N=C( X)2 (X = N or S) structures of ligands have significant effects on the fonnationof fluoroboron cations and the related NMR parameters. D3BF2+ and some D2BF2+ show the expected inertness, but (DBU)2BF2+ shows an interestingly high reactivity. (D2BF2+)(X-) formed from weak organic bases such as pyridine can react with stronger organic bases and form DD'BF2+ and D'2BF2+ in acetone or nitromethane. Fast atom bombardment mass spectrometry is doubly meaningful to this work. Firstly, FABMS can be directly applied to the complicated fluoroboron cation containing solution systems as an excellent complementary technique to multinuclear NMR. Secondly, the gas-phase ion substitution reaction of (D2BF2+)(PF6-) with the strong organic bases is successfully observed in a FABMS ion source when the B-N bond is not too strong in these cations.