2 resultados para Nickel.

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cocondensation of nickel with a number of unsaturated ligands was studied, as was the cocondensation with a number of mixed ligand systems. Enamines were found not to react with nickel while acrylonitrile was polymerized. In the mixed ligand syst.ems different products were obtained than when the ligands were cocondensed individually. Cocondensations of benzyl halide/allyl halide mixtures gave unstable products that were not observed when the halides were cocondensed individually. The effect of Kao-Wool insulation on nickel/benzyl halide cocondensations was found to be significant. Kao-Wool caused the bulk of the benzyl halide to be polymeri zed to a number of poly-benzylic species. An alkali metal reactor was designed for the evaporation of sodium and potassium atoms into cold solutions of metal halide and an or ganic substrate. This apparatus was used to synthesize Ni(P¢3 )3' but proved unsuccessful for synthesizing a nickel-enamine compound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although it is widely assumed that temperature affects pollutant toxicity, few studies have actually investigated this relationship. Moreover, such research as has been done has involved constant temperatures; circumstances which are rarely, if ever, actually experienced by north temperate, littoral zone cyprinid species. To investigate the effects of temperature regime on nickel toxicity in goldfish (Carassius auratus L.), 96- and 240-h LCSO values for the heavy metal pollutant, nickel (NiCI2.6H20), were initially determined at 2DoC (22.8 mg/L and 14.7 mg/L in artificially softened water). Constant temperature bioassays at 10°C, 20°C and 30°C were conducted at each of 0, 240-h and 96-h LCSO nickel concentrations for 240 hours. In order to determine the effects of temperature variation during nickel exposure it was imperative that the effects of a single temperature change be investigated before addressing more complex regimes. Single temperature changes of + 10°C or -10°C were imposed at rates of 2°C/h following exposures of between 24 hand 216 h. The effects of a single temperature change on mortality, and duration of toxicant exposure at high and low temperatures were evaluated. The effects of fluctuating temperatures during exposure were investigated through two regimes. The first set of bioassays imposed a sinewave diurnal cycle temperature (20.±.1DOC) throughout the 10 day exposure to 240-h LeSO Ni. The second set of investigations approximated cyprinid movement through the littoral zone by imposing directionally random temperature changes (±2°C at 2-h intervals), between extremes of 10° and 30°C, at 240-h LC50 Ni. Body size (i.e., total length, fork length, and weight) and exposure time were recorded for all fish mortalities. Cumulative mortality curves under constant temperature regimes indicated significantly higher mortality as temperature and nickel concentration were increased. At 1DOC no significant differences in mortality curves were evident in relation to low and high nickel test concentrations (Le., 16 mg/L and 20 mg/L). However at 20°C and 30°C significantly higher mortality was experienced in animals exposed to 20 mg/L Ni. Mortality at constant 10°C was significantly lower than at 30°C with 16 mg/L and was significantly loWer than each of 2DoC and 39°C tanks at 20 mg/L Ni exposure. A single temperature shift from 20°C to 1DoC resulted in a significant decrease in mortality rate and conversely, a single temperature shift from 20°C to 30°C resulted in a significant increase in mortality rate. Rates of mortality recorded during these single temperature shift assays were significantly different from mortality rates obtained under constant temperature assay conditions. Increased Ni exposure duration at higher temperatures resulted in highest mortality. Diurnally cycling temperature bioassays produced cumulative mortality curves approximating constant 20°C curves, with increased mortality evident after peaks in the temperature cycle. Randomly fluctuating temperature regime mortality curves also resembled constant 20°C tanks with mortalities after high temperature exposures (25°C - 30°C). Some test animals survived in all assays with the exception of the 30°C assays, with highest survival associated with low temperature and low Ni concentration. Post-exposure mortality occurred most frequently in individuals which had experienced high Ni concentrations and high temperatures during assays. Additional temperature stress imposed 2 - 12 weeks post exposure resulted in a single death out of 116 individuals suggesting that survivors are capable of surviving subsequent temperature stresses. These investigations suggest that temperature significantly and markedly affects acute nickel toxicity under both constant and fluctuating temperature regimes and plays a role in post exposure mortality and subsequent stress response.