25 resultados para Neuromuscular manifestations
em Brock University, Canada
Resumo:
N'-coumaroyl spermidine (NlCSpd) is a plant derived chemical which is proposed to belong to a class of low molecular weight neuroactive substances called phenolic polyamines. NlCSpd is stnicturally similar to glutamate receptor blocking toxins found in certain spiders and wasps, such as JSTX-3 and NSTX-3 found in Nephila spiders. The goal of the present study was to determine if plant-derived phenolic polyamines act like other structurally related chemicals found in Arthropod venoms, such as JSTX-3, and whether they can be classified in the same pharmacological group as the spider and wasp toxins. A comparison was made to determine the relative potencies of various phenolic polyamines fi-om plants and insect venoms. This comparison was done by measuring the effect of various concentrations ofNlCSpd on the amplitude of excitatory postsynaptic potentials (EPSPs) elicited in muscle of the crayfish Proccanbarus clarkii. NlCSpd was also tested on L-glutamate induced potentials to determine if a postsynaptic component to sj^naptic block occurs. NlCSpd and an analogue with an a longer polyamine chain, NlCSpm, blocked EPSPs in a dose dependent manner, NlCSpd having an IC50 of lOOnM. NlCSpd also blocked L-glutamate induced potentials. The two main components of the NlCSpd molecule alone are insufficient for activity. NlCSpd acts postsynaptically by interfering with crayfish glutamatergic synaptic transmission, likely blocking glutamate receptors by interacting with the same site(s) as other phenolic polyamines. Certain moieties on the polyamines molecule are necessary for activity while others are not.
The role of cyclic nucleotides in modulation of crayfish neuromuscular junctions by a neuropeptide /
Resumo:
DF2, a heptapeptide, is a member of the family of FMRFamide-like peptides and has been shown to increase the amount of transmitter released at neuromuscular junctions of the crayfish, Procambarus clarkit Recent evidence has shown that protein kinase C (PKC), calcium/calmodulin-dependent protein kinase II (CaMKII) and the cAMPdependent protein kinase (PKA) play a role in the neuromodulatory pathway of DF2. The involvement of these kinases led to the prediction that a G-protein-coupled receptor (GPCR) is activated by DF2 due to the role that each kinase plays in traditional GPCR pathways seen in other organisms and in other cells. G-proteins can also act on an enzyme that generates cyclic guanosine monophosphate (cGMP) which mediates its effects through a cGMP-dependent protein kinase (PKG). This thesis addresses the question of whether or not DF2's effects on synaptic transmission in crayfish are mediated by the cyclic nucleotides cAMP and cGMP. The effects of DF2 on synaptic transmission were examined using deep abdominal extensor muscles of the crayfish Procambarus clarkii. An identified motor neuron was stimulated, and excitatory post-synaptic potentials (EPSPs) were recorded in abdominal extensor muscle LI . A number of activators and inhibitors were used to determine whether or not cAMP, PKA, cGMP and PKG mediate the effect of this peptide. Chemicals that are known to activate PKA (Sp-cAMPS) and/or PKG (8-pCPTcGMP) mimic and potentiate DF2's effect by increasing EPSP amplitude. Inhibitors of either PKA (Rp-cAMPS) or PKG (Rp-8-pCPT-cGMPS) block a portion of the increase in EPSP amplitude induced by the peptide. When both kinase inhibitors are applied simultaneously, the entire effect of DF2 on EPSPs is blocked. The PKG inhibitor blocks the effects of a PKG activator but does not alter the effect of a PKA activator on EPSP amplitude. Thus, the PKG inhibitor appears to be relatively specific for PKG. A trend in the data suggests that the PKA inhibitor blocks a portion of the response elicited by the PKG activator. Thus, the PKA inhibitor may be less specific for PKA. Phosphodiesterase inhibitors, which are known to inhibit the breakdown of cAMP (IBMX) and/or cGMP (mdBAMQ), potentiate the effect of the peptide. These results support the hypothesis that cAMP and cGMP, acting through their respective protein kinase enzymes, mediate the ability of DFi to increase transmitter output.
Resumo:
Competitive sports participation in youth is becoming increasingly more common in the Western world. It is widely accepted that sports participation, specifically endurance training, is beneficial for physical, psychomotor, and social development of children. The research on the effect of endurance training in children has focused mainly on healthrelated benefits and physiological adaptations, particularly on maximal oxygen uptake. However, corresponding research on neuromuscular adaptations to endurance training and the latter's possible effects on muscle strength in youth is lacking. In children and adults, resistance training can enhance strength and mcrease muscle activation. However, data on the effect of endurance training on strength and neuromuscular adaptations are limited. While some evidence exists demonstrating increased muscle activation and possibly increased strength in endurance athletes compared with untrained adults, the neuromuscular adaptations to endurance training in children have not been examined. Thus, the purpose of this study was to examine maximal isometric torque and rate of torque development (RID), along with the pattern of muscle activation during elbow and knee flexion and extension in muscle-endurancetrained and untrained men and boys. Subjects included 65 males: untrained boys (n=18), endurance-trained boys (n=12), untrained men (n=20) and endurance-trained men (n=15). Maximal isometric torque and rate of torque development were measured using an isokinetic dynamometer (Biodex III), and neuromuscular activation was assessed using surface electromyography (SEMG). Muscle strength and activation were assessed in the dominant arm and leg, in a cross-balanced fashion during elbow and knee flexion and extension. The main variables included peak torque (T), RTD, rate of muscle activation (Q30), Electro-mechanical delay (EMD), time to peak RTD and co-activation index. Age differences in T, RTD, electro-mechanical delay (EMD) and rate of muscle activation (Q30) were consistently observed in the four contractions tested. Additionally, Q30, nonnalized for peak EMG amplitude, was consistently higher in the endurancetrained men compared with untrained men. Co-activation index was generally low in all contractions. For example, during maximal voluntary isometric knee extension, men were stronger, had higher RTD and Q30, whether absolute or nonnalized values were used. Moreover, boys exhibited longer EMD (64.8 ± 18.5 ms vs. 56.6 ± 15.3 ms, for boys and men respectively) and time to peak RTD (112.4 ± 33.4 ms vs. 100.8 ± 39.1 ms for boys and men, respectively). In addition, endurance-trained men had lower T compared with untrained men, yet they also exhibited significantly higher nonnalized Q30 (1.9 ± 1.2 vs. 1.1 ± 0.7 for endurance-trained men and untrained men, respectively). No training effect was apparent in the boys. In conclusion, the findings demonstrate muscle strength and activation to be lower in children compared with adults, regardless of training status. The higher Q30 of the endurance-trained men suggests neural adaptations, similar to those expected in response to resistance training. The lower peak torque may su9gest a higher relative involvement oftype I muscle fibres in the endurance-trained athletes. Future research is required to better understand the effect of growth and development on muscle strength and activation patterns during dynamic and sub-maximal isometric contractions. Furthennore, training intervention studies could reveal the effects of endurance training during different developmental stages, as well as in different muscle groups.
Resumo:
This study examined muscle strength, muscle performance, and neuromuscular function during contractions at different velocities across maturation stages and between sexes. Participants included pre-pubertal, late-pubertal and adult males and females. All completed 8 isometric and 8 isokinetic leg extensions at two different velocities. Peak torque (PT), rate of torque development (PrTD), electromechanical-day (EMD), rate of muscle activation (Q30), muscle activation efficiency and coactivation were determined. Sex, maturity, and velocity main effects were found in PT and PrTD, reflecting greater values in men, adults, and isometric contractions respectively. When values were normalized to quadriceps cross-sectional area (qCSA), there was still an increase with maturity. EMD decreased with maturity. Adults had greater activation efficiency than children. Overall, differences in muscle size and neuromuscular function failed to explain group differences in PT or PrTD. More research is needed to investigate why adults may be affected to a greater extent by increasing movement velocity.
Resumo:
a grounded theory study investigating perceptions of technology by learners of English as a second language
Resumo:
The electromyographic threshold (EMGTh), defined as an upward inflexion in the rising EMG signal during progressive exercise, is thought to reflect the onset of increased type-II MU recruitment. The study’s objective was to compare the relative exercise intensity at which the EMGTh occurs in boys vs. men. Participants included 21 men (23.4±4.1 yrs) and 23 boys (11.1±1.1 yrs). Ramped cycle-ergometry was conducted to volitional exhaustion with surface EMG recorded from the vastus lateralis muscles. The EMGTh was mathematically determined using a composite of both legs. EMGTh was detected in 95.2% of the men and in 78.3% of the boys (χ2(1, n=44) =2.69, p =.10). The boys’ EMGTh was significantly higher than the men’s (86.4±9.6 vs. 79.7±10.0% of peak power-output at exhaustion; p <.05). These findings suggest that boys activate their type-II MUs to a lesser extent than men during progressive exercise and support the hypothesis of differential child–adult MU activation.
Resumo:
The present study examined a wrist extension-to-flexion contraction pattern that was theorized to result in proprioceptive neuromuscular facilitation. However, the “reversal of antagonists” contraction pattern may have, alternatively, interfered with motor learning-related increases in strength. Participants (N=24) were matched on predicted strength and randomly assigned to either the control or experimental group. Training occurred during three test sessions within a one-week period. Retention and transfer (crossed-condition) tests were administered during a fourth test session two- weeks later. Both groups exhibited comparable increases in strength (20.2%) and decreases in muscle coactivation (35.2%), which were retained and transferred. Decreases in error and variability of the torque traces were associated with parallel decreases in variability of muscle activity. The reversal of antagonists technique did not interfere with motor learning-related increases in strength and decreases in variability. However, the more complex contraction pattern failed to result in proprioceptive neuromuscular facilitation of strength.
Resumo:
Neuropeptides can modulate physiological properties of neurons in a cell-specific manner. The present work examines whether a neuropeptide can also modulate muscle tissue in a cell-specific manner, using identified muscle cells in third instar larvae of fruit flies. DPKQDFMRFa, a modulatory peptide in the fruit fly Drosophila melanogaster, has been shown to enhance transmitter release from motor neurons and to elicit contractions by a direct effect on muscle cells. We report that DPKQDFMRFa causes a nifedipine-sensitive drop in input resistance in some muscle cells (6 and 7) but not others (12 and 13). The peptide also increased the amplitude of nerve-evoked contractions and compound excitatory junctional potentials (EJPs) to a greater degree in muscle cells 6 and 7 than 12 and 13. Knocking down FMRFa receptor (FR) expression separately in nerve and muscle indicate that both presynaptic and postsynaptic FR expression contributed to the enhanced contractions, but EJP enhancement was due mainly to presynaptic expression. Muscle-ablation showed that DPKQDFMRFa induced contractions and enhanced nerve-evoked contractions more strongly in muscle cells 6 and 7 than cells 12 and 13. In situ hybridization indicated that FR expression was significantly greater in muscle cells 6 and 7 than 12 and 13. Taken together, these results indicate that DPKQDFMRFa can elicit cell-selective effects on muscle fibres. The ability of neuropeptides to work in a cell-selective manner on neurons and muscle cells may help explain why so many peptides are encoded in invertebrate and vertebrate genomes.
Resumo:
The capacity for all living cells to sense and interact with their environment is a necessity for life. In highly evolved, eukaryotic species, like humans, signalling mechanisms are necessary to regulate the function and survival of all cells in the organism. Synchronizing systemic signalling systems at the cellular, organ and whole-organism level is a formidable task, and for most species requires a large number of signalling molecules and their receptors. One of the major types of signalling molecules used throughout the animal kingdom are modulatory substances (e.x. hormones and peptides). Modulators can act as chemical transmitters, facilitating communication at chemical synapses. There are hundreds of circulating modulators within the mammalian system, but the reason for so many remains a mystery. Recent work with the fruit fly, Drosophila melanogaster demonstrated the capacity for peptides to modulate synaptic transmission in a neuron-specific manner, suggesting that peptides are not simply redundant, but rather may have highly specific roles. Thus, the diversity of peptides may reflect cell-specific functions. The main objective of my doctoral thesis was to examine the extent to which neuromodulator substances and their receptors modulate synaptic transmission at a cell-specific level using D. melanogaster. Using three different modulatory substances, i) octopamine - a biogenic amine released from motor neuron terminals, ii) DPKQDFMRFa - a neuropeptide secreted into circulation, and iii) Proctolin - a pentapeptide released both from motor neuron terminals and into circulation, I was able to investigate not only the capacity of these various substances to work in a cell-selective manner, but also examine the different mechanisms of action and how modulatory substances work in concert to execute systemic functionality . The results support the idea that modulatory substances act in a circuit-selective manner in the central nervous system and in the periphery in order to coordinate and synchronize physiologically and behaviourally relevant outputs. The findings contribute as to why the nervous system encodes so many modulatory substances.
Resumo:
Although reductions in cerebral blood flow (CBF) may be implicated in the development of central fatigue during environmental stress, the contribution from hypocapnia-induced reductions in CBF versus reductions in CBF per se has yet to be isolated. The current research program examined the influence of CBF, with and without consequent hypocapnia, on neuromuscular responses during hypoxia and passive heat stress. To this end, neuromuscular responses, as indicated by motor evoked potentials (MEP), maximal M-wave (Mmax) and cortical voluntary activation (cVA) of the flexor carpi radialis muscle during isometric wrist flexion, was assessed in three separate projects: 1) hypocapnia, independent of concomitant reductions in CBF; 2) altered CBF during severe hypoxia and; 3) thermal hyperpnea-mediated reductions in CBF, independent of hypocapnia. All projects employed a custom-built dynamic end-tidal forcing system to control end-tidal PCO2 (PETCO2), independent of the prevailing environmental conditions, and cyclooxygenase inhibition using indomethacin (Indomethacin, 1.2 mg·Kg-1) to selectively reduce CBF (estimated using transcranial Doppler ultrasound) without changes in PETCO2. A primary finding of the present research program is that the excitability of the corticospinal tract is inherently sensitive to changes in PaCO2, as demonstrated by a 12% increase in MEP amplitude in response to moderate hypocapnia. Conversely, CBF mediated reductions in cerebral O2 delivery appear to decrease corticospinal excitability, as indicated by a 51-64% and 4% decrease in MEP amplitude in response to hypoxia and passive heat stress, respectively. The collective evidence from this research program suggests that impaired voluntary activation is associated with reductions in CBF; however, it must be noted that changes in cVA were not linearly correlated with changes in CBF. Therefore, other factors independent of CBF, such as increased perception of effort, distress or discomfort, may have contributed to the reductions in cVA. Despite the functional association between reductions in CBF and hypocapnia, both variables have distinct and independent influence on the neuromuscular system. Therefore, future studies should control or acknowledge the separate mechanistic influence of these two factors.
Resumo:
This study examined the effect of 8-weeks of resistance (RT) and plyometric (PLYO) training on maximal strength, power and jump performance compared with no added training (CON), in young male soccer players. Forty-one 11-13 year-old soccer players were divided into three groups (RT, PLYO, CON). All participants completed 5 isometric knee extensions at 90° and 5 isokinetic knee extensions at 240°/s pre- and post-training. Peak torque (PT), peak rate of torque development (pRTD), electromechanical-day (EMD), rate of muscle activation (Q30), muscle cross-sectional area (mCSA) and jump performance were examined. Both RT and PLYO resulted in significant (p < 0.05) increases in PT, pRTD and jump performance. RT resulted in significantly greater increases in both isometric and isokinetic PT, while PLYO resulted in significantly greater increases in isometric pRTD and jump performance compared with CON (p < 0.05). Q30 increased to a greater extent in PLYO (20%) compared with RT (5%) and CON (-5%) (p = 0.1). In conclusion, 8-weeks of RT and PLYO resulted in significant improvements in muscle strength and jump performance. RT appears to be more effective at eliciting increases in maximal strength while PLYO appears to enhance explosive strength, mediated by possible increases in the rate of muscle activation.
Resumo:
This thesis analyzes four philosophical questions surrounding Ibn al-'Arabi's concept of the al-iman al-kamil, the Perfect Individual. The Introduction provides a definition of Sufism, and it situates Ibn al-'Arabi's thought within the broader context of the philosophy of perfection. Chapter One discusses the transformative knowledge of the Perfect Individual. It analyzes the relationship between reason, revelation, and intuition, and the different roles they play within Islam, Islamic philosophy, and Sufism. Chapter Two discusses the ontological and metaphysical importance of the Perfect Individual, exploring the importance of perfection within existence by looking at the relationship the Perfect Individual has with God and the world, the eternal and non-eternal. In Chapter Three the physical manifestations of the Perfect Individual and their relationship to the Prophet Muhammad are analyzed. It explores the Perfect Individual's roles as Prophet, Saint, and Seal. The final chapter compares Ibn al-'Arabi's Perfect Individual to Sir Muhammad Iqbal's in order to analyze the different ways perfect action can be conceptualized. It analyzes the relationship between freedom and action.
Resumo:
Introduction The question of the meaning, methods and philosophical manifestations of history is currently rife with contention. The problem that I will address in an exposition of the thought of Wilhelm Dilthey and Martin Heidegger, centers around the intersubjectivity of an historical world. Specifically, there are two interconnected issues. First, since all knowledge occurs to a person from within his or her historical age how can any person in any age make truth claims? In order to answer this concern we must understand the essence and role of history. Yet how can we come to an individual understanding ofwhat history is when the meanings that we use are themselves historically enveloped? But can we, we who are well aware of the knowledge that archaeology has dredged up from old texts or even from 'living' monuments of past ages, really neglect to notice these artifacts that exist within and enrich our world? Charges of wilful blindness would arise if any attempt were made to suggest that certain things of our world did not come down to us from the past. Thus it appears more important 2 to determine what this 'past' is and therefore how history operates than to simply derail the possibility for historical understanding. Wilhelm Dilthey, the great German historicist from the 19th century, did not question the existence of historical artifacts as from the past, but in treating knowledge as one such artifact placed the onus on knowledge to show itself as true, or meaningful, in light ofthe fact that other historical periods relied on different facts and generated different truths or meanings. The problem for him was not just determining what the role of history is, but moreover to discover how knowledge could make any claim as true knowledge. As he stated, there is a problem of "historical anarchy"!' Martin Heidegger picked up these two strands of Dilthey's thought and wanted to answer the problem of truth and meaning in order to solve the problem of historicism. This problem underscored, perhaps for the first time, that societal presuppositions about the past and present oftheir era are not immutable. Penetrating to the core of the raison d'etre of the age was an historical reflection about the past which was now conceived as separated both temporally and attitudinally from the present. But further than this, Heidegger's focus on asking the question of the meaning of Being meant that history must be ontologically explicated not merely ontically treated. Heidegger hopes to remove barriers to a genuine ontology by II 1 3 including history into an assessment ofprevious philosophical systems. He does this in order that the question of Being be more fully explicated, which necessarily for him includes the question of the Being of history. One approach to the question ofwhat history is, given the information that we get from historical knowledge, is whether such knowledge can be formalized into a science. Additionally, we can approach the question of what the essence and role of history is by revealing its underlying characteristics, that is, by focussing on historicality. Thus we will begin with an expository look at Dilthey's conception of history and historicality. We will then explore these issues first in Heidegger's Being and Time, then in the third chapter his middle and later works. Finally, we shall examine how Heidegger's conception may reflect a development in the conception of historicality over Dilthey's historicism, and what such a conception means for a contemporary historical understanding. The problem of existing in a common world which is perceived only individually has been philosophically addressed in many forms. Escaping a pure subjectivist interpretation of 'reality' has occupied Western thinkers not only in order to discover metaphysical truths, but also to provide a foundation for politics and ethics. Many thinkers accept a solipsistic view as inevitable and reject attempts at justifying truth in an intersubjective world. The problem ofhistoricality raises similar problems. We 4 -. - - - - exist in a common historical age, presumably, yet are only aware ofthe historicity of the age through our own individual thoughts. Thus the question arises, do we actually exist within a common history or do we merely individually interpret this as communal? What is the reality of history, individual or communal? Dilthey answers this question by asserting a 'reality' to the historical age thus overcoming solipsism by encasing individual human experience within the historical horizon of the age. This however does nothing to address the epistemological concern over the discoverablity of truth. Heidegger, on the other hand, rejects a metaphysical construel of history and seeks to ground history first within the ontology ofDasein, and second, within the so called "sending" of Being. Thus there can be no solipsism for Heidegger because Dasein's Being is necessarily "cohistorical", Being-with-Others, and furthermore, this historical-Being-in-the-worldwith- Others is the horizon of Being over which truth can appear. Heidegger's solution to the problem of solipsism appears to satisfy that the world is not just a subjective idealist creation and also that one need not appeal to any universal measures of truth or presumed eternal verities. Thus in elucidating Heidegger's notion of history I will also confront the issues ofDasein's Being-alongside-things as well as the Being of Dasein as Being-in-the-world so that Dasein's historicality is explicated vis-a-vis the "sending of Being" (die Schicken des S eins).
Resumo:
Self-presentation reflects the processes by which individuals attempt to monitor and control the impressions others form of them (Schlenker & Leary, 1982). Concerns over impressions conveyed have been linked to numerous health behaviors (Crawford & Eklund, 1994; Martin, Leary, & O'Brien, 2001). The present study investigated the role of cognitive manifestations of dispositional and situational self presentational motivation (SPM) in 131 females with known groups differences on a measure of eating disorders. Participants were classified as in-treatment (IN = 39); at risk (AT = 46); and not at risk (NOT = 46) for eating disordered behaviour. Each participant completed The Brief Fear of Negative Evaluation Scale (FNE; Leary, 1983), the Public Self-Consciousness Scale (PSC; Fenigstein, Sheier, & Buss, 1975), and the Social Physique Anxiety Scale (SPA; Hart, Leary, & Rejeski, 1989), as measures of dispositional SPM. Situational SPM was assessed through Self-Presentational Efficacy (SPE; Gammage, Hall, & Martin, 2004), and the Exercise Motivation Inventory-2 (Markland & Ingeldew, 1997). Significant differences emerged on the measure of eating disorder behaviour between AT and NOT. To determine if group differences existed on measures of trait SPM an ANOVA was conducted. Results indicated that the NOT group experienced less FNE, PSC and SPA than the IN and AT groups, and the AT group experienced less FNE and PSC than the IN group. Pearson bivariate correlations were conducted on measures of trait SPM and EMI-2 subscales theoretically linked to SPM. It was found that FNE, PSC and SPA were all positively correlated with weight management for the NOT group. To determine if group differences existed on selfpresentational exercise motives independent samples I-tests were conducted. Results revealed that the AT group was more motivated to exercise for weight management, and appearance, and social recognition than the NOT group. To determine if group differences existed on the state measure of self-presentational efficacy a series of ANOVA's were conducted. Results revealed that the NOT group experienced significantly greater self-presentational efficacy expectancy and self-presentational outcome value than the AT group. Finally, a discriminant function analysis was conducted to determine if trait SPM would predict group membership. Results revealed that 63.4% of participants were correctly classified, with SPA, PSC, and FNE differentiating the NOT group from the AT and IN groups and FNE and PSC differentiating the AT group from the IN group. Thus self-presentation motivation appears to have an influence on females who have an eating disorder and those at risk for an eating disorder. Potential applications of the influence of self-presentational motives on eating disorders and future research directions are discussed.