7 resultados para Network Security System
em Brock University, Canada
Resumo:
While service-learning is often said to be beneficial for all those involved—students, community members, higher education institutions, and faculty members—there are relatively few studies of the attraction to, and effect of, service-learning on faculty members. Existing studies have tended to use a survey design, and to be based in the United States. There is a lack of information on faculty experiences with service-learning in Ontario or Canada. This qualitative case study of faculty experiences with service-learning was framed through an Appreciative Inquiry social constructionist approach. The data were drawn from interviews with 18 faculty members who belong to a Food Security Research Network (FSRN) at a university in northern Ontario, reports submitted by the network, and personal observation of a selection of network-related events. This dissertation study revealed how involvement with service-learning created opportunities for faculty learning and growth. The focus on food security and a commitment to the sustainability of local food production was found to be an ongoing attraction to service-learning and a means to engage in and integrate research and teaching on matters of personal and professional importance to these faculty members. The dissertation concludes with a discussion of the FSRN’s model and the perceived value of a themed, transdisciplinary approach to service-learning. This study highlights promising practices for involving faculty in service-learning and, in keeping with an Appreciative Inquiry approach, depicts a view of faculty work at its best.
Resumo:
Failed and fragile states that result from intrastate war pose severe threats to the security of both the international system and individual states alike. In the post-Cold War era, the international community has come to recognize the reality of these threats and the difficulty involved in ending violence and building sustainable peace in failed and fragile states. This work focuses upon the development of a comprehensive strategy for sustainable peace-building by incorporating the tenets of the human security doctrine into the peace-building process. Through the use of case studies of The Former Yugoslav Republic of Macedonia and East Timor, the development and refinement of the doctrine of human security will occur, as well as, an understanding of how and where human security fits into the sustainable peace-building equation. The end result of the analysis is the development of a hierarchical pyramid formation that brings together human security and peace-building into one framework that ultimately creates the foundation and structure of sustainable peace-building. With the development of a sustainable peace-building structure based upon the human security doctrine, the role of Canada in the support of sustainable peace-building is analyzed in relation to the form and level of involvement that Canada undertakes and contributes to in the implementation and support of sustainable peace-building initiatives. Following from this, recommendations are provided regarding what role(s) Canada should undertake in the sustainable peace-building process that take into consideration the present and likely future capabilities of Canada to be involved in various aspects of the peace-building process. ii This paper outlines the need for a peace-building strategy that is designed to be sustainable in order that failed and fragile states resulting from intrastate conflict do not regress or collapse back into a condition of civil war, and subsequently designs such a strategy. The linking of peace-building and human security creates the required framework from which sustainable peace-building is derived. Creating sustainable peace is necessary in order to increase the likelihood that both present and future generations existing in failed and fragile states will be spared from the scourge of intrastate war.
Resumo:
A feature-based fitness function is applied in a genetic programming system to synthesize stochastic gene regulatory network models whose behaviour is defined by a time course of protein expression levels. Typically, when targeting time series data, the fitness function is based on a sum-of-errors involving the values of the fluctuating signal. While this approach is successful in many instances, its performance can deteriorate in the presence of noise. This thesis explores a fitness measure determined from a set of statistical features characterizing the time series' sequence of values, rather than the actual values themselves. Through a series of experiments involving symbolic regression with added noise and gene regulatory network models based on the stochastic 'if-calculus, it is shown to successfully target oscillating and non-oscillating signals. This practical and versatile fitness function offers an alternate approach, worthy of consideration for use in algorithms that evaluate noisy or stochastic behaviour.
Resumo:
Please consult the paper edition of this thesis to read. It is available on the 5th Floor of the Library at Call Number: Z 9999 P65 D53 2007
Resumo:
Adaptive systems of governance are increasingly gaining attention in respect to complex and uncertain social-ecological systems. Adaptive co-management is one strategy to make adaptive governance operational and holds promise with respect to community climate change adaptation as it facilitates participation and learning across scales and fosters adaptive capacity and resilience. Developing tools which hasten the realization of such approaches are growing in importance. This paper describes explores the Social Ecological Inventory (SEI) as a tool to 'prime' a regional climate change adaptation network. The SEI tool draws upon the social-ecological systems approach in which social and ecological systems are considered linked. SEIs bridge the gap between conventional stakeholder analysis and biological inventories and take place through a six phase process. A case study describes the results of applying an SEI to prime an adaptive governance network for climate change adaptation in the Niagara Region of Canada. Lessons learned from the case study are discussed and highlight how the SEI catalyzed the adaptive co-management process in the case. Future avenues for SEIs in relation to climate change adaptation emerge from this exploratory work and offer opportunities to inform research and adaptation planning.
Resumo:
A complex network is an abstract representation of an intricate system of interrelated elements where the patterns of connection hold significant meaning. One particular complex network is a social network whereby the vertices represent people and edges denote their daily interactions. Understanding social network dynamics can be vital to the mitigation of disease spread as these networks model the interactions, and thus avenues of spread, between individuals. To better understand complex networks, algorithms which generate graphs exhibiting observed properties of real-world networks, known as graph models, are often constructed. While various efforts to aid with the construction of graph models have been proposed using statistical and probabilistic methods, genetic programming (GP) has only recently been considered. However, determining that a graph model of a complex network accurately describes the target network(s) is not a trivial task as the graph models are often stochastic in nature and the notion of similarity is dependent upon the expected behavior of the network. This thesis examines a number of well-known network properties to determine which measures best allowed networks generated by different graph models, and thus the models themselves, to be distinguished. A proposed meta-analysis procedure was used to demonstrate how these network measures interact when used together as classifiers to determine network, and thus model, (dis)similarity. The analytical results form the basis of the fitness evaluation for a GP system used to automatically construct graph models for complex networks. The GP-based automatic inference system was used to reproduce existing, well-known graph models as well as a real-world network. Results indicated that the automatically inferred models exemplified functional similarity when compared to their respective target networks. This approach also showed promise when used to infer a model for a mammalian brain network.
Resumo:
This paper develops a model of short-range ballistic missile defense and uses it to study the performance of Israel’s Iron Dome system. The deterministic base model allows for inaccurate missiles, unsuccessful interceptions, and civil defense. Model enhancements consider the trade-offs in attacking the interception system, the difficulties faced by militants in assembling large salvos, and the effects of imperfect missile classification by the defender. A stochastic model is also developed. Analysis shows that system performance can be highly sensitive to the missile salvo size, and that systems with higher interception rates are more “fragile” when overloaded. The model is calibrated using publically available data about Iron Dome’s use during Operation Pillar of Defense in November 2012. If the systems performed as claimed, they saved Israel an estimated 1778 casualties and $80 million in property damage, and thereby made preemptive strikes on Gaza about 8 times less valuable to Israel. Gaza militants could have inflicted far more damage by grouping their rockets into large salvos, but this may have been difficult given Israel’s suppression efforts. Counter-battery fire by the militants is unlikely to be worthwhile unless they can obtain much more accurate missiles.