4 resultados para Nasir-Mohammed, Sultan of Egypt, 1284-1341.
em Brock University, Canada
Resumo:
The 2004-2005 Board of Trustees. Pictured here from left to right are: Front Row - Val Fleming; Dr. Patricia Teal; Wendy Staff; Dr. Norris Walker, Chair; Dr. David Atkinson, President and Vice Chancellor; Dr. Val Jaeger; Donna Scott; and Steven Lalinovich. Middle Row - Mike Farrell, Secretary to the University; Rudi Kroeker; Brandon Larry, President, Brock University Students' Union; Dr. Terry Boak, Vice-President, Academic and Provost; Mitzi Banders; Geeta Powell; Dr. Sid Segalowitz; Tom Gauld; Karin Jahnke-Haslam; and Dr. Mohammed Dore. Back Row - David Edwards, Immediate Past Chair; Bruce Wormald; Willy Heldbuechel, Vice-Chair; Brad Clarke; David Howes, Vice-Chair; Mark Steinman; Peter Partridge; Michael Sidenberg; Angelo Nitsopoulos; Steven Pillar, Vice President, Finance and Administration; Ron Dubien, Chief Information Officer. Absent from photo - Dr. Raymond Moriyama, Chancellor; Eleanor Ross; Jagoda Pike; Dr. Mary Frances Richardson; and Nick Brown.
Resumo:
Increased losses of eggs and chicks resulting from human intrusion (investigator or other) into seabird colonies has been well documented. In 1990/91, I studied the effects of investigator disturbance on aggressive behaviour and breeding success of individual pairs of ring-billed gulls nesting at two colonies near Port Colborne, Ontario. The insular colony was on an artificial breakwall, associated with the Welland Ship Canal, approximately 1 km off the north shore of Lake Erie. The mainland colony was adjacent to the canal approximately 1 km east of the breakwall. The frequencies of adult threat and assault behaviours, chick movement and adult attacks on chicks were recorded by continuous scan sampling 30 min prior to, 30 min during and 60 (2 X 30) min after investigator disturbance. The frequency of threat and assault behaviours increased during the period of investigator activity in the colony while the duration of wingpulls and beakpulls decreased. Significantly more chicks ran ("runners") from their natal territories during disturbances and "runners" were more frequently attacked than "territorial" chicks. No chicks were fatally attacked during disturbance and "runners" returned to their natal territories quickly after disturbance. Breeding success was determined for pairs nesting in study plots subjected to two levels of disturbance (normal and moderate). The disturbance level of each plot differed in visitation frequency and activities performed on each visit. Investigator disturbance had no effect on the hatching success or fledging success (taken as 21 days of age) of ring-billed gull study pairs at either colony.
Resumo:
Bovine adenovirus type 3 (BAV3) is a medium size DNA virus that causes respiratory and gastrointestinal disorders in cattle. The viral genome consists of a 35,000 base pair, linear, double-stranded DNA molecule with inverted terminal repeats and a 55 kilodalton protein covalently linked to each of the 5' ends. In this study, the viral genome was cloned in the form of subgenomic restriction fragments. Five EcoRI internal fragments spanning 3.4 to 89.0 % and two Xb a I internal fragments spanning 35.7 to 82.9 % of the viral genome were cloned into the EcoRI and Xbal sites of the bacterial vector pUC19. To generate overlap between cloned fragments, ten Hi n dIll internal fragments spanning 3.9 to 84.9 and 85.5 to 96% and two BAV3 BamHI internal fragments spanning 59.8 to 84.9% of the viral genome were cloned into the HindllI and BamHI sites of pUC19. The HindlII cloning strategy also resulted in six recombinant plasmids carrying two or more Hi ndII I fragments. These fragments provided valuable information on the linear orientation of the cloned fragments within the viral genome. Cloning of the terminal fragments required the removal of the residual peptides that remain attached to the 5' ends of the genome. This was accomplished by alkaline hydrolysis of the DNA-peptide bond. BamH I restriction fragments of the peptide-free DNA were cloned into pUC19 and resulted in two plasmids carrying the BAV3 Bam HI terminal fragments spanning 0 to 53.9% and 84.9 to 100% of the viral genome.