7 resultados para NON-COVALENT COMPLEX

em Brock University, Canada


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Canadian honeys were analyzed for sugar concentration, honey colour, total phenolic content, the level of brown pigments, and antioxidant activity in order to elucidate the main components involved in the antioxidant activity of honey. By employing size-exclusion chromatography in combination with activity-guided fractionation, it was demonstrated that the antioxidant components are of high molecular weight (HMW), brown in colour and absorb at both 280nm and 450nm. The presence of brown HMW antioxidant components prompted an investigation on the influence of heattreatment on the Maillard reaction and the formation of melanoid ins. Heat-treatment of honey resulted in an increase in the level of phenolics in the melanoidin fractions which correlated with an increase in antioxidant activity. The preliminary results of this study suggest for the first time that honey melanoidins underlie the antioxidant activity of unheated and heat-treated honey, and that phenolic constituents are involved in the melanoidin structure and are likely incorporated by covalent or non-covalent interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Dummer Complex extends 180 km along the Precambrian - Paleozoic contact from Tamworth to Lake Simcoe. It is composed of coarse, angular Paleozoic clasts in discontinuous, pitted, hummocky deposits. Deposits are usually separated by bare or boulder strewn bedrock, but have been found in the southern drumlinized till sheet. Dummer Complex deposits show rough alignment with ice-flow. Eskers cross-cut many of the deposits. Dummer sediment subfacies are defined on the basis of dominant coarse grain size and lithology, which relate directly to the underlying Paleozoic formation. Three subglacial tills are identified based on the degree of comminution and distance of transport; the immature facies of the Dummer Complex; the mature facies of the drumlinized till sheet and; the submature facies which is transitional. Carbonate geochemistry was used for till-bedrock correlation in various grain sizes. Of the 3 Paleozoic formations underlying the Dummer Complex, the Gull River Fm. is geochemically distinctive from the Bobcaygeon and Verulam Formations using Ca, Mg, Sr, Cu, Mn, Fe and Na. The Bobcaygeon Fm. and Verulam Fm. can be differentiated using Ca and the Sr/Ca ratio. The immature facies from 1.0 phi and finer is dominated by the non-carbonate, long distance transported component which decreases slightly downice. The submature till facies contains more long distance material than the immature facies. Sr and Mn can be used to correlate the Gull River immature till facies to the underlying bedrock the other subfacies could not be distinguished from each other or their respective source formation. This method proved to be ineffective for sediments with greater than 35% non-carbonate component, due to leaching of elements by the dissolving acid.The Dummer Complex is produced subglacially , as the compressional ice encounters the permeable Paleozoic carbonates. The increased shear strength of the ice and pore pressures in the carbonates results in the basal ice zones becoming debris ladden. Cleaner ice overrides the basal debris . laden dead ice which then acts as the glacier bed. During retreat, the Simcoe lobe stagnates as flow is cut-off by the Algonquin Highlands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism whereby cytochrome £ oxidase catalyses elec-. tron transfer from cytochrome £ to oxygen remains an unsolved problem. Polarographic and spectrophotometric activity measurements of purified, particulate and soluble forms of beef heart mitochondrial cytochrome c oxidase presented in this thesis confirm the following characteristics of the steady-state kinetics with respect to cytochrome £: (1) oxidation of ferrocytochrome c is first order under all conditions. -(2) The relationship between sustrate concentration and velocity is of the Michaelis-Menten type over a limited range of substrate. concentrations at high ionic strength. (3) ~he reaction rate is independent from oxygen concentration until very low levels of oxygen. (4) "Biphasic" kinetic plots of enzyme activity as a function of substrate concentration are found when the range of cytochrome c concentrations is extended; the biphasicity ~ is more apparent in low ionic strength buffer. These results imply two binding sites for cytochrome £ on the oxidase; one of high affinity and one of low affinity with Km values of 1.0 pM and 3.0 pM, respectively, under low ionic strength conditions. (5) Inhibition of the enzymic rate by azide is non-c~mpetitive with respect to cytochrome £ under all conditions indicating an internal electron transfer step, and not binding or dissociation of £ from the enzyme is rate limiting. The "tight" binding of cytochrome '£ to cytochrome c oxidase is confirmed in column chromatographic experiments. The complex has a cytochrome £:oxidase ratio of 1.0 and is dissociated in media of high ionic strength. Stopped-flow spectrophotometric studies of the reduction of equimolar mixtures and complexes of cytochrome c and the oxidase were initiated in an attempt to assess the functional relevance of such a complex. Two alternative routes -for reduction of the oxidase, under conditions where the predominant species is the £ - aa3 complex, are postulated; (i) electron transfer via tightly bound cytochrome £, (ii) electron transfer via a small population of free cytochrome c interacting at the "loose" binding site implied from kinetic studies. It is impossible to conclude, based on the results obtained, which path is responsible for the reduction of cytochrome a. The rate of reduction by various reductants of free cytochrome £ in high and low ionic strength and of cytochrome £ electrostatically bound to cytochrome oxidase was investigated. Ascorbate, a negatively charged reagent, reduces free cytochrome £ with a rate constant dependent on ionic strength, whereas neutral reagents TMPD and DAD were relatively unaffected by ionic strength in their reduction of cytochrome c. The zwitterion cysteine behaved similarly to uncharged reductants DAD and TI~PD in exhibiting only a marginal response to ionic strength. Ascorbate reduces bound cytochrome £ only slowly, but DAD and TMPD reduce bound cytochrome £ rapidly. Reduction of cytochrome £ by DAD and TMPD in the £ - aa3 complex was enhanced lO-fold over DAD reduction of free £ and 4-fold over TMPD reduction of free c. Thus, the importance of ionic strength on the reactivity of cytochrome £ was observed with the general conclusion being that on the cytochrome £ molecule areas for anion (ie. phosphate) binding, ascorbate reduction and complexation to the oxidase overlap. The increased reducibility for bound cytochrome £ by reductants DAD and TMPD supports a suggested conformational change of electrostatically bound c compare.d to free .£. In addition, analysis of electron distribution between cytochromes £ and a in the complex suggest that the midpotential of cytochrome ~ changes with the redox state of the oxidase. Such evidence supports models of the oxidase which suggest interactions within the enzyme (or c - enzyme complex) result in altered midpoint potentials of the redox centers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Higher plants have evolved a well-conserved set of photoprotective mechanisms, collectively designated Non-Photochemical Quenching of chlorophyll fluorescence (qN), to deal with the inhibitory absorption of excess light energy by the photosystems. Their main contribution originates from safe thermal deactivation of excited states promoted by a highly-energized thylakoid membrane, detected via lumen acidification. The precise origins of this energy- or LlpH-dependent quenching (qE), arising from either decreased energy transfer efficiency in PSII antennae (~ Young & Frank, 1996; Gilmore & Yamamoto, 1992; Ruban et aI., 1992), from alternative electron transfer pathways in PSII reaction centres (~ Schreiber & Neubauer, 1990; Thompson &Brudvig, 1988; Klimov et aI., 1977), or from both (Wagner et aI., 1996; Walters & Horton, 1993), are a source of considerable controversy. In this study, the origins of qE were investigated in spinach thylakoids using a combination of fluorescence spectroscopic techniques: Pulse Amplitude Modulated (PAM) fluorimetry, pump-probe fluorimetry for the measurement of PSII absorption crosssections, and picosecond fluorescence decay curves fit to a kinetic model for PSII. Quenching by qE (,..,600/0 of maximal fluorescence, Fm) was light-induced in circulating samples and the resulting pH gradient maintained during a dark delay by the lumenacidifying capabilities of thylakoid membrane H+ ATPases. Results for qE were compared to those for the addition of a known antenna quencher, 5-hydroxy-1,4naphthoquinone (5-0H-NQ), titrated to achieve the same degree of Fm quenching as for qE. Quenching of the minimal fluorescence yield, F0' was clear (8 to 130/0) during formation of qE, indicative of classical antenna quenching (Butler, 1984), although the degree was significantly less than that achieved by addition of 5-0H-NQ. Although qE induction resulted in an overall increase in absorption cross-section, unlike the decrease expected for antenna quenchers like the quinone, a larger increase in crosssection was observed when qE induction was attempted in thylakoids with collapsed pH gradients (uncoupled by nigericin), in the absence of xanthophyll cycle operation (inhibited by DTT), or in the absence of quenching (LlpH not maintained in the dark due to omission of ATP). Fluorescence decay curves exhibited a similar disparity between qE-quenched and 5-0H-NQ-quenched thylakoids, although both sets showed accelerated kinetics in the fastest decay components at both F0 and Fm. In addition, the kinetics of dark-adapted thylakoids were nearly identical to those in qEquenched samples at F0' both accelerated in comparison with thylakoids in which the redox poise of the Oxygen-Evolving Complex was randomized by exposure to low levels of background light (which allowed appropriate comparison with F0 yields from quenched samples). When modelled with the Reversible Radical Pair model for PSII (Schatz et aI., 1988), quinone quenching could be sufficiently described by increasing only the rate constant for decay in the antenna (as in Vasil'ev et aI., 1998), whereas modelling of data from qE-quenched thylakoids required changes in both the antenna rate constant and in rate constants for the reaction centre. The clear differences between qE and 5-0H-NQ quenching demonstrated that qE could not have its origins in the antenna alone, but is rather accompanied by reaction centre quenching. Defined mechanisms of reaction centre quenching are discussed, also in relation to the observed post-quenching depression in Fm associated with photoinhibition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photosynthesis in general is a key biological process on Earth and Photo system II (PSII) is an important component of this process. PSII is the only enzyme capable of oxidizing water and is largely responsible for the primordial build-up and present maintenance of the oxygen in the atmosphere. This thesis endeavoured to understand the link between structure and function in PSII with special focus on primary photochemistry, repair/photodamage and spectral characteristics. The deletion of the PsbU subunit ofPSII in cyanobacteria caused a decoupling of the Phycobilisomes (PBS) from PSII, likely as a result of increased rates of PSII photodamage with the PBS decoupling acting as a measure to protect PSII from further damage. Isolated fractions of spinach thylakoid membranes were utilized to characterize the heterogeneity present in the various compartments of the thylakoid membrane. It was found that the pooled PSIILHCII pigment populations were connected in the grana stack and there was also a progressive decrease in the reaction rates of primary photochemistry and antennae size of PSII as the sample origin moved from grana to stroma. The results were consistent with PSII complexes becoming damaged in the grana and being sent to the stroma for repair. The dramatic quenching of variable fluorescence and overall fluorescent yield of PSII in desiccated lichens was also studied in order to investigate the mechanism by which the quenching operated. It was determined that the source of the quenching was a novel long wavelength emitting external quencher. Point mutations to amino acids acting as ligands to chromophores of interest in PSII were utilized in cyanobacteria to determine the role of specific chromophores in energy transfer and primary photochemistry. These results indicated that the Hl14 ligated chlorophyll acts as the 'trap' chlorophyll in CP47 at low temperature and that the Q130E mutation imparts considerable changes to PSII electron transfer kinetics, essentially protecting the complex via increased non-radiative charge Photosynthesis in general is a key biological process on Earth and Photo system II (PSII) is an important component of this process. PSII is the only enzyme capable of oxidizing water and is largely responsible for the primordial build-up and present maintenance of the oxygen in the atmosphere. This thesis endeavoured to understand the link between structure and function in PSII with special focus on primary photochemistry, repair/photodamage and spectral characteristics. The deletion of the PsbU subunit ofPSII in cyanobacteria caused a decoupling of the Phycobilisomes (PBS) from PSII, likely as a result of increased rates of PSII photodamage with the PBS decoupling acting as a measure to protect PSII from further damage. Isolated fractions of spinach thylakoid membranes were utilized to characterize the heterogeneity present in the various compartments of the thylakoid membrane. It was found that the pooled PSIILHCII pigment populations were connected in the grana stack and there was also a progressive decrease in the reaction rates of primary photochemistry and antennae size of PSII as the sample origin moved from grana to stroma. The results were consistent with PSII complexes becoming damaged in the grana and being sent to the stroma for repair. The dramatic quenching of variable fluorescence and overall fluorescent yield of PSII in desiccated lichens was also studied in order to investigate the mechanism by which the quenching operated. It was determined that the source of the quenching was a novel long wavelength emitting external quencher. Point mutations to amino acids acting as ligands to chromophores of interest in PSII were utilized in cyanobacteria to determine the role of specific chromophores in energy transfer and primary photochemistry. These results indicated that the Hl14 ligated chlorophyll acts as the 'trap' chlorophyll in CP47 at low temperature and that the Q130E mutation imparts considerable changes to PSII electron transfer kinetics, essentially protecting the complex via increased non-radiative charge.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Complex networks can arise naturally and spontaneously from all things that act as a part of a larger system. From the patterns of socialization between people to the way biological systems organize themselves, complex networks are ubiquitous, but are currently poorly understood. A number of algorithms, designed by humans, have been proposed to describe the organizational behaviour of real-world networks. Consequently, breakthroughs in genetics, medicine, epidemiology, neuroscience, telecommunications and the social sciences have recently resulted. The algorithms, called graph models, represent significant human effort. Deriving accurate graph models is non-trivial, time-intensive, challenging and may only yield useful results for very specific phenomena. An automated approach can greatly reduce the human effort required and if effective, provide a valuable tool for understanding the large decentralized systems of interrelated things around us. To the best of the author's knowledge this thesis proposes the first method for the automatic inference of graph models for complex networks with varied properties, with and without community structure. Furthermore, to the best of the author's knowledge it is the first application of genetic programming for the automatic inference of graph models. The system and methodology was tested against benchmark data, and was shown to be capable of reproducing close approximations to well-known algorithms designed by humans. Furthermore, when used to infer a model for real biological data the resulting model was more representative than models currently used in the literature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diatoms are renowned for their robust ability to perform NPQ (Non-Photochemical Quenching of chlorophyll fluorescence) as a dissipative response to heightened light stress on photosystem II, plausibly explaining their dominance over other algal groups in turbulent light environs. Their NPQ mechanism has been principally attributed to a xanthophyll cycle involving the lumenal pH regulated reversible de-epoxidation of diadinoxanthin. The principal goal of this dissertation is to reveal the physiological and physical origins and consequences of the NPQ response in diatoms during short-term transitions to excessive irradiation. The investigation involves diatom species from different originating light environs to highlight the diversity of diatom NPQ and to facilitate the detection of core mechanisms common among the diatoms as a group. A chiefly spectroscopic approach was used to investigate NPQ in diatom cells. Prime methodologies include: the real time monitoring of PSII excitation and de-excitation pathways via PAM fluorometry and pigment interconversion via transient absorbance measurements, the collection of cryogenic absorbance spectra to measure pigment energy levels, and the collection of cryogenic fluorescence spectra and room temperature picosecond time resolved fluorescence decay spectra to study excitation energy transfer and dissipation. Chemical inhibitors that target the trans-thylakoid pH gradient, the enzyme responsible for diadinoxanthin de-epoxidation, and photosynthetic electron flow were additionally used to experimentally manipulate the NPQ response. Multifaceted analyses of the NPQ responses from two previously un-photosynthetically characterised species, Nitzschia curvilineata and Navicula sp., were used to identify an excitation pressure relief ‘strategy’ for each species. Three key areas of NPQ were examined: (i) the NPQ activation/deactivation processes, (ii) how NPQ affects the collection, dissipation, and usage of absorbed light energy, and (iii) the interdependence of NPQ and photosynthetic electron flow. It was found that Nitzschia cells regulate excitation pressure via performing a high amplitude, reversible antenna based quenching which is dependent on the de-epoxidation of diadinoxanthin. In Navicula cells excitation pressure could be effectively regulated solely within the PSII reaction centre, whilst antenna based, diadinoxanthin de-epoxidation dependent quenching was implicated to be used as a supplemental, long-lasting source of excitation energy dissipation. These strategies for excitation balance were discussed in the context of resource partitioning under these species’ originating light climates. A more detailed investigation of the NPQ response in Nitzschia was used to develop a comprehensive model describing the mechanism for antenna centred non-photochemical quenching in this species. The experimental evidence was strongly supportive of a mechanism whereby: an acidic lumen triggers the diadinoxanthin de-epoxidation and protonation mediated aggregation of light harvesting complexes leading to the formation of quencher chlorophyll a-chlorophyll a dimers with short-lived excited states; quenching relaxes when a rise in lumen pH triggers the dispersal of light harvesting complex aggregates via deprotonation events and the input of diadinoxanthin. This model may also be applicable for describing antenna based NPQ in other diatom species.