4 resultados para NEAR-INFRARED OBSERVATIONS
em Brock University, Canada
Resumo:
Polarized reflectance measurements of the quasi I-D charge-transfer salt (TMTSFh CI04 were carried out using a Martin-Puplett-type polarizing interferometer and a 3He refrigerator cryostat, at several temperatures between 0.45 K and 26 K, in the far infrared, in the 10 to 70 cm- 1 frequency range. Bis-tetramethyl-tetraselena-fulvalene perchlorate crystals, grown electrochemically and supplied by K. Behnia, of dimensions 2 to 4 by 0.4 by 0.2 mm, were assembled on a flat surface to form a mosaic of 1.5 by 3 mm. The needle shaped crystals were positioned parallel to each other along their long axis, which is the stacking direction of the planar TMTSF cations, exposing the ab plane face (parallel to which the sheets of CI04 anions are positioned). Reflectance measurements were performed with radiation polarized along the stacking direction in the sample. Measurements were carried out following either a fast (15-20 K per minute) or slow (0.1 K per minute) cooling of the sample. Slow cooling permits the anions to order near 24 K, and the sample is expected to be superconducting below 1.2 K, while fast cooling yields an insulating state at low temperatures. Upon the slow cooling the reflectance shows dependence with temperature and exhibits the 28 cm- 1 feature reported previously [1]. Thermoreflectance for both the 'slow' and 'fast' cooling of the sample calculated relative to the 26 K reflectance data indicates that the reflectance is temperature dependent, for the slow cooling case only. A low frequency edge in the absolute reflectance is assigned an electronic origin given its strong temperature dependence in the relaxed state. We attribute the peak in the absolute reflectance near 30 cm-1 to a phonon coupled to the electronic background. Both the low frequency edge and the 30 cm-1 feature are noted te shift towards higher frequcncy, upon cntering the superconducting state, by an amount of the order of the expected superconducting energy gap. Kramers-Kronig analysis was carried out to determine the optical conductivity for the slowly cooled sample from the measured reflectance. In order to do so the low frequency data was extrapolated to zero frequency using a Hagen-Ru bens behaviour, and the high frequency data was extended with the data of Cao et al. [2], and Kikuchi et al. [3]. The real part of the optical conductivity exhibits an asymmetric peak at 35 cm-1, and its background at lower frequencies seems to be losing spectral weight with lowering of the temperature, leading us to presume that a narrow peak is forming at even lower frequencies.
Resumo:
The perovskite crystal structure is host to many different materials from insulating to superconducting providing a diverse range of intrinsic character and complexity. A better fundamental description of these materials in terms of their electronic, optical and magnetic properties undoubtedly precedes an effective realization of their application potential. SmTiOa, a distorted perovskite has a strongly localized electronic structure and undergoes an antiferromagnetic transition at 50 K in its nominally stoichiometric form. Sr2Ru04 is a layered perovskite superconductor (ie. Tc % 1 K) bearing the same structure as the high-tem|>erature superconductor La2_xSrrCu04. Polarized reflectance measurements were carried out on both of these materials revealing several interesting features in the far-infrared range of the spectrum. In the case of SmTiOa, although insulating, evidence indicates the presence of a finite background optical conductivity. As the temperature is lowered through the ordering temperature a resonance feature appears to narrow and strengthen near 120 cm~^ A nearby phonon mode appears to also couple to this magnetic transition as revealed by a growing asymmetry in the optica] conductivity. Experiments on a doped sample with a greater itinerant character and lower Neel temperature = 40 K also indicate the presence of this strongly temperature dependent mode even at twice the ordering temperature. Although the mode appears to be sensitive to the magnetic transition it is unclear whether a magnon assignment is appropriate. At very least, evidence suggests an interesting interaction between magnetic and electronic excitations. Although Sr2Ru04 is highly anisotropic it is metallic in three-dimensions at low temperatures and reveals its coherent transport in an inter-plane Drude-like component to the highest temperatures measured (ie. 90 K). An extended Drude analysis is used to probe the frequency dependent scattering character revealing a peak in both the mass enhancement and scattering rate near 80 cm~* and 100 cm~* respectively. All of these experimental observations appear relatively consistent with a Fermi-liquid picture of charge transport. To supplement the optical measurements a resistivity station was set up with an event driven object oriented user interface. The program controls a Keithley Current Source, HP Nano-Voltmeter and Switching Unit as well as a LakeShore Temperature Controller in order to obtain a plot of the Resistivity as a function of temperature. The system allows for resistivity measurements ranging from 4 K to 290 K using an external probe or between 0.4 K to 295 K using a Helium - 3 Cryostat. Several materials of known resistivity have confirmed the system to be robust and capable of measuring metallic samples distinguishing features of several fiQ-cm.
Resumo:
The far infrared reflectance of Sb2Te3 , Sbi.97Vo.o3Te3 and Sbi.94Cr .o6Te3 was measured near normal incidence at different temperatures (between 45K and 300K). The direct current resistivities of the above samples were also measured between the temperatures of 4K and 300K. Also Kramers Kronig (KK) analyses were performed on the reflectance spectra to obtain the optical conductivities. In the doped samples, it was observed that a phonon at 62cm-1 softens to about 55cm-1 on decreasing the temperature from 295K to 45K. Also, it was observed that the plasma frequency of the doped samples is independent of doping. The scattering rate for the vanadium doped sample was seen to be greater than that for the chromium doped sample despite the fact that vanadium impurity density is less than that of chromium. The Drude-Lorentz model fits to the KK optical conductivity show that the samples used in this work are conventional metals. Definitive measurements of the temperature dependence of the scattering rate across the ferromagnetic transition await equipment changes allowing measurements at low temperature using the mercury cadmium telluride (MCT) detector.
Resumo:
Temperature dependent resistivity, p, magnetic susceptibility, X, and far-infrared reflectance measurements were made on the low Tc superconductor UBe13. Two variants of UBe13 have been proposed, named 'L'- (for low Tc ) and 'H'-type (for high Tc ). Low temperature resistivity measurements confirmed that our sample was of H-type and that the transition temperature was at 0.9 K. This was further confirmed with the observation of this transition in the AC-susceptibility. Low temperature reflectance measurements showed a decrease in the reflectivity as the temperature is lowered from 300 to 10 K, which is in qualitative agreement with the increasing resistivity in this temperature range as temperature is lowered. No dramatic change in the reflectivity was observed between 10 and 0.75 K. A further decrease of the reflectance was observed for the temperature of 0.5 K. The calculated optical conductivity shows a broad minimum near 80 cm-1 below 45 K. Above 45 K the conductivity is relatively featureless. As the temperature is lowered, the optical conductivity decreases. The frequency dependent scattering rate was found to be flat for temperatures between 300 and 45 K. The development of a peak, at around 70 cm-1 was found for temperatures of 45 K and below. This peak has been associated with the energy at which the transition to a coherent state occurs from single impurity scattering in other heavy fermion systems. The frequency dependent mass enhancement coefficient was found to increase at low frequencies as the frequency decreases. Its' magnitude as frequency approaches zero also increased as the temperature decreased.