1 resultado para N fertilization

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soybean (Glycine ~ (L.) Merr. cv. Harosoy 63) plants inoculated with Rhizobium japonicum were grown in vermiculite in the presence or absence of nitrate fertilization for up to 6 weeks after planting. Overall growth of nodulated plants was enhanced in the presence of nitrate fertilization, while the extent of nodule development was reduced. Although the number of nodules was not affected by nitrate fertilization when plants were grown at a light intensity limiting for photosynthesis, at light intensities approaching or exceeding the light saturation point for photosynthesis, nitrate fertilization resulted in at least a 30% reduction in nodule numbers. The mature, first trifoliate leaf of 21 day old plants was allowed to photoassimi1ate 14C02. One hour after·· the initial exposure to 14C02, the , plants were harvested and the 14C radioactivity was determined in the 80% ethanol-soluble fraction: in. o:rider to assess· "the extent of photoassimilate export and the pattern of distribution of exported 14C. The magnitude of 14C export was not affected by the presence of nitrate fertilization. However, there was a significant effect on the distribution pattern, particularly with regard to the partitioning of 14C-photosynthate between the nodules and the root tissue. In the presence of nitrate fertilization, less than 6% of the exported 14C photosynthate was recovered from the nodules, with much larger amounts (approximately 37%) being recovered from the root tissue. In the absence of nitrate fertilization, recovery of exported 14C-photosynthate from the nodules (19 to 27%) was approximately equal to that from the root tissue (24 to 33%). By initiating- or terminating the applications of nitrate at 14 days of age, it was determined that the period from day 14 to day 21 after planting was particularly significant for the development of nodules initiated earlier. Addition of nitrate fertilization at this time inhibited further nodule development while stimulating plant growth, whereas removal of nitrate fertilization stimulated nodule development. The results obtained are consistent with the hypothesis that nodule development is inhibited by nitrate fertilization through a reduction in the availability of photosynthate to the nodules.