6 resultados para Mutated TP53 cell lines

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The construction of adenovirus vectors for cloning and foreign gene expression requires packaging cell lines that can complement missing viral functions caused by sequence deletions and/or replacement with foreign DNA sequences. In this study, packaging cell lines were designed to provide in trans the missing bovine adenovirus functions, so that recombinant viruses could be generated. Fetal bovine kidney and lUng cells, acquired at the trimester term from a pregnant cow, were tranfected with both digested wild type BAV2 genomic DNA and pCMV-EI. The plasmid pCMV-EI was specifically constructed to express El of BAV2 under the control of the cytomegalovirus enhancer/promoter (CMV). Selection for "true" transformants by continuous passaging showed no success in isolating immortalised cells, since the cells underwent crisis resulting in complete cell death. Moreover, selection for G418 resistance, using the same cells, also did not result in the isolation of an immortalised cell line and the same culture-collapse event was observed. The lack of success in establishing an immortalised cell line from fetal tissue prompted us to transfect a pre-established cell line. We began by transfecting MDBK (Mardin-Dardy bovine kidney) cells with pCMV-El-neo, which contain the bacterial selectable marker neo gene. A series of MDBK-derived cell lines, that constitutively express bovine adenoviral (BAV) early region 1 (El), were then isolated. Cells selected for resistance to the drug G418 were isolated collectively for full characterisation to assess their suitability as packaging cell lines. Individual colonies were isolated by limiting dilution and further tested for El expression and efficiency of DNA uptake. Two cell lines, L-23 and L-24, out of 48 generated foci tested positive for £1 expression using Northern Blot analysis. DNA uptake studies, using both lipofectamine and calcium phosphate methods, were performed to compare these cells, their parental MDBK cells, 8 and the unrelated human 293 cells as a benchmark. The results revealed that the new MDBKderived clones were no more efficient than MDBK cells in the transient expression of transfected DNA and that they were inferior to 293 cells, when using lacZ as the reporter gene. In view of the inherently poor transfection efficiency of MDBK cells and their derivatives, a number of other bovine cells were investigated for their potential as packaging cells. The cell line CCL40 was chosen for its high efficiency in DNA uptake and subsequently transfected with the plasmid vector pCMV El-neo. By selection with the drug G418, two cell lines were isolated, ProCell 1 and ProCell 2. These cell lines were tested for El expression, permissivity to BAV2 and DNA uptake efficiency, revealing a DNA uptake efficiency of 37 % , comparable to that of CCL40. Attempts to rescue BAV2 mutants carrying the lacZ gene in place of £1 or £3 were carried out by co-transfecting wild type viral DNA with either the plasmid pdlElE-Z (which contains BAV2 sequences from 0% to 40.4% with the lacZ gene in place of the £1 region from 1.1% to 8.25%) or with the plasmid pdlE3-5-Z (which contains BAV2 sequences from 64.8% to 100% with the lacZ gene in place of the E3 region from 75.8% to 81.4%). These cotransfections did not result in the generation of a viral mutant. The lack of mutant generation was thought to be caused by the relative inefficiency ofDNA uptake. Consequently, cosBAV2, a cosmid vector carrying the BAV2 genome, was modified to carry the neo reporter gene in place of the £3 region from 75.8% to 81.4%. The use of a single cosmid vector earring the whole genome would eliminate the need for homologous recombination in order to generate a viral vector. Unfortunately, the transfection of cosBAV2- neo also did not result in the generation of a viral mutant. This may have been caused by the size of the £3 deletion, where excess sequences that are essential to the virus' survival might have been deleted. As an extension to this study, the spontaneous E3 deletion, accidently discovered in our viral stock, could be used as site of foreign gene insertion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human adenoviruses (Ads), members of the family adenoviridae, are medium-sized DNA viruses which have been used as valuable research tools for the study of RNA processing, oncogenic transformation, and for the development of viral vectors for use in gene delivery and immunization technology. The left 12% of the linear Ad genollle codes for products which are necessary for the efficient replication of the virus, as well as being responsible for the forlllation of tumors in animallllodels. The establishlllent of the 293 cell line, by immortalization of human embryonic kidney cells with th~ E1 region of Ad type S (AdS), has facilitated extensive manipulation of the Ads and the development of recombinant Ad vectors. The study of bovine adenoviruses (BAVs), which cause mild respiratory and gastrointestinal infections in cattle has, on the other hand, been limited primarily to that of infectivity, immunology and clinicallllanifestations. As a result, any potential as gene delivery vehicles has not yet been realized. Continued research into the molecular biolo~gy of BAVs and the development of recolllbinant vectors would benefit from the development of a cell line analogous to that of the 293 cells. In an attelllpt to establish such a cell line, the recombinant plaslllid pKC-neo was constructed, containing the left 0-19.7% of the BAV type 3 (BAV3) genome, and the selectable marker for resistance to the aminoglycoside G418, a neomycin derivative. The plasmid construct was then used to transfect both the Madin-Darby bovine kidney (MDBK) -iicell line and primary bovine lung cells, after which G418-resistant foci were selected for analysis. Two cell lines, E61 (MDBK) and E24 (primary lung), were subsequently selected and analysed for DNA content, revealing the presence of the pKC-neo sequences in their respective genomes. In addition, BAV3 RNA transcripts were detected in the E61 cells. Although the presence of E1 products has yet to be confirmed in both cell lines, the E24 cells exhibit a phenotype characteristic of partial transformation by E1. The apparent immortalization of the primary lung cells will permit exploitation of their ability to take up exogenous DNA at high efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most human genes undergo alternative splicing and loss of splicing fidelity is associated with disease. Epigenetic silencing of hMLH 1 via promoter cytosine methylation is causally linked to a subset of sporadic non-polyposis colon cancer and is reversible by 5-aza-2' -deoxycytidine treatment. Here I investigated changes in hMLHI mRNA splicing profiles in normal fibroblasts and colon cancer-derived human cell lines. I established the types and frequencies of hMLHI mRNA transcripts generated under baseline conditions, after hydrogen peroxide induced oxidative stress, and in acutely 5-aza-2' -deoxycytidine-treated and stably derepressed cancer cell lines. I found that hMLHI is extensively spliced under all conditions including baseline (50% splice variants), the splice variant distribution changes in response to oxidative stress, and certain splice variants are sensitive to 5- aza-2' -deoxycytidine treatment: Splice variant diversity and frequency of exon 17 skipping correlates with the level of hMLHI promoter methylation suggesting a link between promoter methylation and mRNA splicing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recombinant human adenovirus (Ad) vectors are being extensively explored for their use in gene therapy and recombinant vaccines. Ad vectors are attractive for many reasons, including the fact that (1) they are relatively safe, based on their use as live oral vaccines, (2) they can accept large transgene inserts, (3) they can infect dividing and postmitotic cells, and (4) they can be produced to high titers. However, there are also a number of major problems associated with Ad vectors, including transient foreign gene expression due to host cellular immune responses, problems with humoral immunity, and the creation of replication competent adenoviruses (RCA). Most Ad vectors contain deletions in the E1 region that allow for insertion of a transgene. However, the E1 gene products are required for replication and thus must be supplied in trans by a helper ceillille that will allow for the growth and packaging of the defective virus. For this purpose the 293 cell line (Graham et al., 1977) is used most often; however, homologous recombination between the vector and the cell line often results in the generation of RCA. The presence of RCA in batches of adenoviral vectors for clinical use is a safety risk because tlley . may result in the mobilization and spread of the replication-defective vector viruses, and in significant tissue damage and pathogenicity. The present research focused on the alteration of the 293 cell line such that RCA formation can be eliminated. The strategy to modify the 293 cells involved the removal of the first 380 bp of the adenovirus genome through the process of homologous recombination. The first step towards this goal involved identifying and cloning the left-end cellular-viral jUl1ction from 293 cells to assemble sequences required for homologous recombination. Polymerase chain reaction (PCR) was performed to clone the junction, and the clone was verified through sequencing. The plasn1id PAM2 was then constructed, which served as the targeting cassette used to modify the 293 cells. The cassette consisted of (1) the cellular-viral junction as the left-end region of homology, (2) the neo gene to use for positive selection upon tranfection into 293 cells, (3) the adenoviral genome from bp 380 to bp 3438 as the right-end region of homology, and (4) the HSV-tk gene to use for negative selection. The plasmid PAM2 was linearized to produce a double strand break outside the region of homology, and transfected into 293 cells using the calcium-phosphate technique. Cells were first selected for their resistance to the drug G418, and subsequently for their resistance to the drug Gancyclovir (GANC). From 17 transfections, 100 pools of G418f and GANCf cells were picked using cloning lings and expanded for screening. Genomic DNA was isolated from the pools and screened for the presence of the 380 bps using PCR. Ten of the most promising pools were diluted to single cells and expanded in order to isolate homogeneous cell lines. From these, an additional 100 G41Sf and GANef foci were screened. These preliminary screening results appear promising for the detection of the desired cell line. Future work would include further cloning and purification of the promising cell lines that have potentially undergone homologous recombination, in order to isolate a homogeneous cell line of interest.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Spontaneous teratocarcinomas are ovarian or testicular tumors which have their origins in germ cells. The tumors contain a disorganized array of benign differentiated cells as well as an undifferentiated population of malignant stem cells, the embryonal carcinoma or EC cells. These pluripotent stem cells in tissue culture share many properties with the transient pluripotent cells of the early embryo, and might therefore serve as models for the investigation of developmental events ill vitro. The property of EC cells of prime interest in this study is an in vivo phenomenon. Certain EC cell lines are known to be regulated ill vivo and to differentiate normally in association with normal embryonic cells, resulting in chimeric mice. These mice have two genetically distinct cell populations, one of which is derived from the originally malignant EC cells. This has usually been accomplished by injection of the EC cells into the Day 3 blastocyst. In this study, the interactions between earlier stage embryos and EC cells have been tested by aggregating clumps of EC cells with Day 2 embryos. The few previous aggregation studies produced a high degree of abnormality in chimeric embryos, but the EC cells employed had known chromosomal abnormalities. In this study, two diploid EC cell lines (P19 and Pi0) were aggregated with 2.5 day mouse embryos, and were found to behave quite differently in the embryonic environment. P19 containing aggregates generally resorbed early, and the few embryos recovered at midgestation were normal and non-chimeric. Pi0 containing aggregates survived in high numbers to midgestation, and the Pi0 cells were very successful in colonizing the embryo. All these embryos were chimeric, and the contribution by the EC cells to each chimera was very high. However, these heavily chimeric embryos were all abnormal. Blastocyst injection had previously produced some abnormal embryos with high Pl0 contributions in addition to the live born mice, which had lower EC contributions. This study now adds more support to the hypothesis that high EC contributions may be incompatible with normal development. The possibility that the abnormalities were due to the mixing of temporally asynchronous embryonic cell types in the aggregates was tested by aggregating normal pluripotent cells taken from 3.5 day embryos with 2.5 day embryos. Early embryo loss was very high, and histological studies showed that the majority of these embryos died by 6.5 days development. Some embryos escaped this early death such that some healthy chimeras were recovered, in contrast to recovery of abnormal chimeric embryos following Pl0-morula aggregations, and non-chimeric embryos following P19-morula aggregations. This somewhat surprising adverse effect on development following aggregation of normal cell types suggests that there are developmental difficulties associated with the mixing of asynchronous cell types in aggregates. However, the greater magnitude of the adverse effects when the aggregates contained tumor derived cells suggests that EC cells should not be considered the complete equivalent of the pluripotent cells of the early embryo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lung cancer is a major chronic disease responsible for the highest mortality rate, among other types of cancer, and represents 29% of all deaths in Canada. The clinical diagnosis of lung carcinoma still requires a standard diagnostic approach, as there are no symptoms in its early stage. Therefore, it is usually diagnosed at a later stage, when the survival rate is low. With the recent advancement in molecular biology and biotechnology, a molecular biomarker approach for the diagnosis of early lung cancer seems to be a potential option. In this study, we aimed to investigate and standardize a promising Lung ,Cancer Biomarker by studying the aberrant methylation of two tumour suppressor genes, namely RASSFIA and RAR-B, and the miRNA profiling of four . commonly deregulated miRNA (miR-199a-3p, miR-182, miR-lOO and miR-221). Four lung cancer cell lines were used (two SCLC and two NSCLC), with comparisons being made with normal lung cell lines. Our results, we found that none of these genes were methylated. We then evaluated TP53, and found the promoter of this gene to be methylated in the cancer cell lines, as compared to the normal cell lines, indicating gene inactivation. We carried out miRNA profiling of the cancer cell lines and reported that 80 miRNAs are deregulated in lung cancer cell lines as compared to the normal cell lines. Our study was the first of its kind to indicate that hsa-mir-4301, hsa-mir-4707-5p and hsa-mir-4497 (newly discovered miRNAs) are deregulated in lung cancer cell lines. We also investigated miR-199a-3p, mir-lOO and miR-182, and found that miR-199a -3p and mir-l00 were down-regulated in cancer lines, whereas miR-182 was up-regulated in the cancer cell lines. In the final part of the study we observed that mir-221 could be a putative biomarker to distinguish between the two types of lung cancer because it was down-regulated in SCLC, and up-regulated in the NSCLC cell lines. In conclusion, we found four miRNA molecular biomarkers that possibly could be used in the early diagnosis of the lung cancer. More studies are still required with larger numbers of samples to effectively establish these as molecular biomarkers for the diagnosis of lung cancer