2 resultados para Mussato, Albertino, 1261-1329.
em Brock University, Canada
Resumo:
Violence has always been a part of the human experience, and therefore, a popular topic for research. It is a controversial issue, mostly because the possible sources of violent behaviour are so varied, encompassing both biological and environmental factors. However, very little disagreement is found regarding the severity of this societal problem. Most researchers agree that the number and intensity of aggressive acts among adults and children is growing. Not surprisingly, many educational policies, programs, and curricula have been developed to address this concern. The research favours programs which address the root causes of violence and seek to prevent rather than provide consequences for the undesirable behaviour. But what makes a violence prevention program effective? How should educators choose among the many curricula on the market? After reviewing the literature surrounding violence prevention programs and their effectiveness, The Second Step Violence Prevention Curriculum surfaced as unique in many ways. It was designed to address the root causes of violence in an active, student-centred way. Empathy training, anger management, interpersonal cognitive problem solving, and behavioural social skills form the basis of this program. Published in 1992, the program has been the topic of limited research, almost entirely carried out using quantitative methodologies.The purpose of this study was to understand what happens when the Second Step Violence Prevention Curriculum is implemented with a group of students and teachers. I was not seeking a statistical correlation between the frequency of violence and program delivery, as in most prior research. Rather, I wished to gain a deeper understanding of the impact ofthe program through the eyes of the participants. The Second Step Program was taught to a small, primary level, general learning disabilities class by a teacher and student teacher. Data were gathered using interviews with the teachers, personal observations, staff reports, and my own journal. Common themes across the four types of data collection emerged during the study, and these themes were isolated and explored for meaning. Findings indicate that the program does not offer a "quick fix" to this serious problem. However, several important discoveries were made. The teachers feU that the program was effective despite a lack of concrete evidence to support this claim. They used the Second Step strategies outside their actual instructional time and felt it made them better educators and disciplinarians. The students did not display a marked change in their behaviour during or after the program implementation, but they were better able to speak about their actions, the source of their aggression, and the alternatives which were available. Although they were not yet transferring their knowledge into positive action,a heightened awareness was evident. Finally, staff reports and my own journal led me to a deeper understanding ofhow perception frames reality. The perception that the program was working led everyone to feel more empowered when a violent incident occurred, and efforts were made to address the cause rather than merely to offer consequences. A general feeling that we were addressing the problem in a productive way was prevalent among the staff and students involved. The findings from this investigation have many implications for research and practice. Further study into the realm of violence prevention is greatly needed, using a balance of quantitative and qualitative methodologies. Such a serious problem can only be effectively addressed with a greater understanding of its complexities. This study also demonstrates the overall positive impact of the Second Step Violence Prevention Curriculum and, therefore, supports its continued use in our schools.
Resumo:
The quantitative component of this study examined the effect of computerassisted instruction (CAI) on science problem-solving performance, as well as the significance of logical reasoning ability to this relationship. I had the dual role of researcher and teacher, as I conducted the study with 84 grade seven students to whom I simultaneously taught science on a rotary-basis. A two-treatment research design using this sample of convenience allowed for a comparison between the problem-solving performance of a CAI treatment group (n = 46) versus a laboratory-based control group (n = 38). Science problem-solving performance was measured by a pretest and posttest that I developed for this study. The validity of these tests was addressed through critical discussions with faculty members, colleagues, as well as through feedback gained in a pilot study. High reliability was revealed between the pretest and the posttest; in this way, students who tended to score high on the pretest also tended to score high on the posttest. Interrater reliability was found to be high for 30 randomly-selected test responses which were scored independently by two raters (i.e., myself and my faculty advisor). Results indicated that the form of computer-assisted instruction (CAI) used in this study did not significantly improve students' problem-solving performance. Logical reasoning ability was measured by an abbreviated version of the Group Assessment of Lx)gical Thinking (GALT). Logical reasoning ability was found to be correlated to problem-solving performance in that, students with high logical reasoning ability tended to do better on the problem-solving tests and vice versa. However, no significant difference was observed in problem-solving improvement, in the laboratory-based instruction group versus the CAI group, for students varying in level of logical reasoning ability.Insignificant trends were noted in results obtained from students of high logical reasoning ability, but require further study. It was acknowledged that conclusions drawn from the quantitative component of this study were limited, as further modifications of the tests were recommended, as well as the use of a larger sample size. The purpose of the qualitative component of the study was to provide a detailed description ofmy thesis research process as a Brock University Master of Education student. My research journal notes served as the data base for open coding analysis. This analysis revealed six main themes which best described my research experience: research interests, practical considerations, research design, research analysis, development of the problem-solving tests, and scoring scheme development. These important areas ofmy thesis research experience were recounted in the form of a personal narrative. It was noted that the research process was a form of problem solving in itself, as I made use of several problem-solving strategies to achieve desired thesis outcomes.