8 resultados para Mushroom Poisoning.

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aggressive mushroom competitor, Trichoderma harzianum biotype Th4, produces volatile antifungal secondary metabolites both in culture and during the disease cycle in compost. Th4 cultures produced one such compound only when cultured in the presence of Agaricus bisporus mycelium or liquid medium made from compost colonised with A. bisporus. This compound has TLC and UVabsorption and characteristics indicating that it belongs to a class of pyrone antibiotics characterised from other T. harzianum biotypes. UV absorption spectra indicated this compound was not 6-pentyl-2H-pyran-one (6PAP), the volatile antifungal metabolite widely described in Th1. Furthermore, this compound was not produced by Th1 under any culture conditions. Mycelial growth of A. bisporus, Botrytis cinerea and Sclerotium cepivorum was inhibited in the presence of this compound through volatility , diffusion and direct application. This indicates that Th4 produces novel, volatile, antifungal metabolites in the presence of A. bisporus that are likely involved in green mould disease of mushroom crops.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A total of 251 bacterial isolates were isolated from blotched mushroom samples obtained from various mushroom farms in Canada. Out of 251 stored isolates, 170 isolates were tested for pathogenicity on Agaricus bisporus through mushroom rapid pitting test with three distinct pathotypes observed: dark brown, brovm and yellow/yellow-brown blotch. Phenotypic analysis of 83 isolates showed two distinct proteinase K resistant peptide profiles. Profile group A isolates exhibited peptides with masses of 45, 18, 16 and 14 kDa and fiirther biochemical tests identified them as Pseudomonasfluorescens III and V. Profile group B isolates lacked the 16-kDa peptide and the blotch causing bacterial isolates of this group was identified as Serratia liquefaciens and Cedecea davisae. Comparative genetic analysis using Amplified Fragment Length Polymorphism (AFLP) on 50 Pseudomonas sp. isolates (Group A) showed that various blotch symptoms were caused by isolates distributed throughout the Pseudomonas sp. clusters with the exception of the Pseudomonas tolaasii group and one non-pathogenic Pseudomonas fluorescens cluster. These results show that seven distinct Pseudomonas sp. genotypes (genetic clusters) have the ability to cause various symptoms of blotch and that AFLP can discriminate blotch causing from non-blotch causing Pseudomonasfluorescens. Therefore, a complex of diverse bacterial organisms causes bacterial blotch disease

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An unusual postharvest spotting disease of the commercial mushroom, Agaricus bisporus, which was observed on a commercial mushroom farm in Ontario, was found to be caused by a novel pathovar of Pseudomonas tolaasii. Isolations from the discoloured lesions, on the mushroom pilei, revealed the presence of several different bacterial and fungal genera. The most frequently isolated genus being Pseudomonas bacteria. The most frequently isolated fungal genus was Penicillium. Of the bacteria and fungi assayed for pathogenicity to mushrooms, only Pseudomonas tolaasii was able to reproduce the postharvest spotting symptom. This symptom was typically reproduced 1 to 7 days postharvest, when mushroom pilei were inoculated with 101 to 105 cfu. Of the fungi tested for pathogenicity only a Penicillium sp. and Verticillium fungicola were shown to be pathogenic, however, neither produced the postharvest spotting symptom. The Pseudomonas tolaasii strain isolated from the postharvest lesions differed from a type culture (Pseudomonas tolaasii ATCC 33618) in the symptoms it produced on Agaricus bisporus pilei under the same conditions and at the same inoculum concentration. It was therefore designated a pathovar. This strain also differed from the type culture in its cellular protein profile. Neither the type culture, nor the mushroom pathogen was found to contain plasmid DNA. The presence of plasmid DNA is therefore not responsible for the difference in pathogenicity between the two strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prescription of opioid analgesics has risen sharply in North America over the past two decades. This increase has been accompanied by a rise in overdoses. The present study draws on administrative data collected from emergency department contacts to describe the epidemiology of opioid overdose in Ontario b~tween 2002 and 2006 and to examine the role of regional variation in availability of specialist care. The number of poisonings increased from 1250 (10.9 per 100,000) in FY2002 to 1816 (15.2 per 100,000) in FY2005. Local concentration of specialist physicians was significantly associated with the incidence of opioid overdose, inversely at most levels of availability, but positively at very high levels. Regional variation in incidence was also associated with demographics, median family income, and the rate of other drug poisonings. Policy options for limiting opioid-related harms are limited, but improvements in monitoring and clinical management may prove valuable.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Green mould is a serious disease of commercially grown mushrooms, the causal agent being attributed to the filamentous soil fungus Triclzodenna aggressivum f. aggressivu11l and T. aggressivum f. ellropaellm. Found worldwide, and capable of devastating crops, this disease has caused millions of dollars in lost revenue within the mushroom industry. One mechanism used by TricllOdenlla spp. in the antagonism of other fungi, is the secretion of lytic enzymes such as chitinases, which actively degrade a host's cell wall. Therefore, the intent of this study was to examine the production of chitinase enzymes during the host-parasite interaction of Agaricus bisporus (commercial mushroom) and Triclzodemza aggressivum, focusing specifically on chitinase involvement in the differential resistance of white, off-white, and brown commercial mushroom strains. Chitinases isolated from cultures of A. bisporus and T. aggressivu11l grown together and separately, were identified following native PAGE, and analysis of fluorescence based on specific enzymatic cleavage of 4-methylumbelliferyl glucoside substrates. Results indicate that the interaction between T. aggressivulll and A. bisporus involves a complex enzyme battle. It was determined that T. aggressivum produces a number of chitinases that appear to correlate to those isolated in previous studies using biocontrol strains of T. Izarziallilm. A 122 kDa N-acetylglucosaminidase of T. aggressivu11l revealed the highest and most variable activity, and is therefore believed to be an important predictor of antifungal activity. Furthermore, results indicate that brown strain resistance of mushrooms may be related to high levels of a 96 kDa N-acetylglucosaminidase, which showed elevated activity in both solitary and dual cultures with T. aggressivum. Overall, each host-parasite combination produced unique enzyme profiles, with the majority of the differences seen between day 0 and day 6 for the extracellular chitinases. Therefore, it was concluded that the antagonistic behaviour of T. aggressivli1ll does not involve a typical response, always producing the same types and levels of enzymes, but that mycoparasitism, specifically in the form of chitinase production, may be induced and regulated based on the host presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By using glucosamine resistant mutants of Saccharomyces ceriv~sa~ an attempt was made to discover the mechanisms which cause glucose repression and/or the Crabtree effect. The strains used are 4B2, GR6, lOP3r, GR8l and GRI08. 4B2 is a wild type yeast while the others are its mutants. To characterize the biochemical reactions which made these mutants resistant to glucosamine poisoning the following experiments were done~ 1. growth and respiration; 2. transport of sugars; 3. effect of inorganic phosphate (Pi): 4. Hexokinase; 5. In yivo phosphorylation. From the above experiments the following conclusions may be drawn: (i) GR6 and lOP3r have normal respiratory and fermentative pathways. These mutants are resistant to glucosamine poisoning due to a slow rate of sugar transport which is due to change in the cell membrane. (ii) GR8l has a normal respiratory pathway. The slow growth on fermentable carbon sourCEE indicates that in GR8l the lesion is in or associated with the glycolytic pathway. The lower rate of sugar transport may be due to a change in energy metabolism. The invivo phosphorylation rate indicates that in GR81 facilitated diffusion is the dominant transport mechanism. (iii) GR108 msa normal glycolytic pathway but the respiratory pathway is abnormal. The slow rate of sugar transport is due to a change in energy metabolism. The lower percentage of in vivo phosphorylation is probably due to a lowered availability of ATP because of the mitochondrial lesion. In all mutants resistance to glucosamine poisoning is due to a lower rate of utilization of ATP. which is caused by various mechanisms (see above), making less ADP available for phosphorylation via ATP synthase which utilizes inorganic phosphate. Because of the lower utilization of Pi, the concentration of intra-mitochondrial Pi does not go down thus protecting mutants from glucosamine poisoning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Agaricus bisporus is the most commonly cultivated mushroom in North America and has a great economic value. Green mould is a serious disease of A. bisporus and causes major reductions in mushroom crop production. The causative agent of green mould disease in North America was identified as Trichoderma aggressivum f. aggressivum. Variations in the disease resistance have been shown in the different commercial mushroom strains. The purpose of this study is to continue investigations of the interactions between T. aggressivum and A. bisporus during the development of green mould disease. The main focus of the research was to study the roles of cell wall degrading enzymes in green mould disease resistance and pathogenesis. First, we tried to isolate and sequence the N-acetylglucosaminidase from A. bisporus to understand the defensive mechanism of mushroom against the disease. However, the lack of genomic and proteomic information of A. bisporus limited our efforts. Next, T. aggressivum cell wall degrading enzymes that are thought to attack Agaricus and mediate the disease development were examined. The three cell wall degrading enzymes genes, encoding endochitinase (ech42), glucanase (fJ-1,3 glucanase) and protease (prb 1), were isolated and sequenced from T. aggressivum f. aggressivum. The sequence data showed significant homology with the corresponding genes from other fungi including Trichoderma species. The transcription levels of the three T. aggressivum cell wall degrading enzymes were studied during the in vitro co-cultivation with A. bisporus using R T -qPCR. The transcription levels of the three genes were significantly upregulated compared to the solitary culture levels but were upregulated to a lesser extent in co-cultivation with a resistant strain of A. bisporus than with a sensitive strain. An Agrobacterium tumefaciens transformation system was developed for T. aggressivum and was used to transform three silencing plasmids to construct three new T. aggressivum phenotypes, each with a silenced cell wall degrading enzyme. The silencing efficiency was determined by RT-qPCR during the individual in vitro cocultivation of each of the new phenotypes with A. bisporus. The results showed that the expression of the three enzymes was significantly decreased during the in vitro cocultivation when compared with the wild type. The phenotypes were co-cultivated with A. bisporus on compost with monitoring the green mould disease progression. The data indicated that prbi and ech42 genes is more important in disease progression than the p- 1,3 glucanase gene. Finally, the present study emphasises the role of the three cell wall degrading enzymes in green mould disease infection and may provide a promising tool for disease management.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trichoderma aggressivum f. aggressivum is a filamentous soil fungus. Green mold disease of commercial mushrooms caused by this species in North America has resulted in millions of dollars in lost revenue within the mushroom growing industry. Research on the molecular level of T aggressivum have jus t begun with the goal of understanding the functions of each gene and protein, and their expression control. Protein targeting has not been well studied in this species yet. Therefore, the intent of this study was to test the protein localization and production levels in T aggressivum with green fluorescent protein (GFP) with an intron and tagged with either nuclear localization signal (NLS) or an endoplasmic reticulum retention signal (KDEL). Two GFP constructs (with and without the intron) were used as controls in this study. All four constructs were successfully transferred into T aggressivum and all modified strains showed similar growth characteristics as the wild type non-transformed isolate. GFP expression was detected from all modified T aggressivum with confocal microscopy and the expression was similar in all four strains. The intron tested in this study had no or very minor effects as GFP expression was similar with or without it. The GFP signal increased over a 5 day period for all transformants, while the GFP to total protein ratio decreased over the same period for all transformants. The GFP-KDEL transformant showed similar protein expression level and localization as did the control transformant lacking the KDEL retention signal. The GFP-NLS transformant similarly failed to localize GFP into nucleus as fluorescence with this strain was virtually identical to the GFP transformant lacking the NLS. Thus, future research is required to find effective localization signals for T aggressivum.