19 resultados para Muscle activity
em Brock University, Canada
Resumo:
Objective: Overuse injuries in violinists are a problem that has been primarily analyzed through the use of questionnaires. Simultaneous 3D motion analysis and EMG to measure muscle activity has been suggested as a quantitative technique to explore this problem by identifying movement patterns and muscular demands which may predispose violinists to overuse injuries. This multi-disciplinary analysis technique has, so far, had limited use in the music world. The purpose of this study was to use it to characterize the demands of a violin bowing task. Subjects: Twelve injury-free violinists volunteered for the study. The subjects were assigned to a novice or expert group based on playing experience, as determined by questionnaire. Design and Settings: Muscle activity and movement patterns were assessed while violinists played five bowing cycles (one bowing cycle = one down-bow + one up-bow) on each string (G, D, A, E), at a pulse of 4 beats per bow and 100 beats per minute. Measurements: An upper extremity model created using coordinate data from markers placed on the right acromion process, lateral epicondyle of the humerus and ulnar styloid was used to determine minimum and maximum joint angles, ranges of motion (ROM) and angular velocities at the shoulder and elbow of the bowing arm. Muscle activity in right anterior deltoid, biceps brachii and triceps brachii was assessed during maximal voluntary contractions (MVC) and during the playing task. Data were analysed for significant differences across the strings and between experience groups. Results: Elbow flexion/extension ROM was similar across strings for both groups. Shoulder flexion/extension ROM increaslarger for the experts. Angular velocity changes mirrored changes in ROM. Deltoid was the most active of the muscles assessed (20% MVC) and displayed a pattern of constant activation to maintain shoulder abduction. Biceps and triceps were less active (4 - 12% MVC) and showed a more periodic 'on and off pattern. Novices' muscle activity was higher in all cases. Experts' muscle activity showed a consistent pattern across strings, whereas the novices were more irregular. The agonist-antagonist roles of biceps and triceps during the bowing motion were clearly defined in the expert group, but not as apparent in the novice group. Conclusions: Bowing movement appears to be controlled by the shoulder rather than the elbow as shoulder ROM changed across strings while elbow ROM remained the same. Shoulder injuries are probably due to repetition as the muscle activity required for the movement is small. Experts require a smaller amount of muscle activity to perform the movement, possibly due to more efficient muscle activation patterns as a result of practice. This quantitative multidisciplinary approach to analysing violinists' movements can contribute to fuller understanding of both playing demands and injury mechanisms .
Resumo:
The present study has both theoretical and practical aspects. The theoretical intent of the study was to closely examine the relationship between muscle activity (EMG) and EEG state during the process of falling asleep. Sleep stages during sleep onset (SO) have been generally defined with regards to brain wave activity (Recht schaff en & Kales (1968); and more precisely by Hori, Hayashi, & Morikawa (1994)). However, no previous study has attempted to quantify the changes in muscle activity during this same process. The practical aspect of the study examined the reliability ofa commercially developed wrist-worn alerting device (NovAlert™) that utilizes changes in muscle activity/tension in order to alert its user in the event that he/she experiences reduced wakefulness that may result in dangerous consequences. Twelve female participants (aged 18-42) sp-ent three consecutive nights in the sleep lab ("Adaptation", "EMG", and "NOVA" nights). Each night participants were given 5, twenty-minute nap opportunities. On the EMG night, participants were allowed to fall asleep freely. On the NOV A night, participants wore the Nov Alert™ wrist device that administered a Psychomotor Vigilance Test (PVT) when it detected that muscle activity levels had dropped below baseline. Nap sessions were scored using Hori's 9-stage scoring system (Hori et aI, 1994). Power spectral analyses (FFT) were also performed. Effects ofthe PVT administration on EMG and EEG frequencies were also examined. Both chin and wrist EMG activity showed reliable and significant decline during the early stages ofHori staging (stages HO to H3 characterized by decreases in alpha activity). All frequency bands studied went through significant changes as the participants progressed through each ofHori's 9 SO stages. Delta, theta, and sigma activity increased later in the SO continuum while a clear alpha dominance shift was noted as alpha activity shifted from the posterior regions of the brain (during Hori stages HO to H3) to the anterior portions (during Hori stages H7 to H9). Administration of the PVT produced significant increases in EMG activity and was effective in reversing subjective drowsiness experienced during the later stages of sleep onset. Limitations of the alerting effects of the PVTs were evident following 60 to 75 minutes of use in that PVTs delivered afterwards were no longer able to significantly increase EMG levels. The present study provides a clearer picture of the changes in EMG and EEG during the sleep onset period while testing the efficacy of a commercially developed alerting device. EMG decreases were found to begin during Hori stage 0 when EEG was - dominated by alpha wave activity and were maximal as Hori stages 2 to 5 were traversed (coincident with alpha and beta activity). This signifies that EMG decrements and the loss of resting alpha activity are closely related. Since decreased alpha has long been associated with drowsiness and impending sleep, this investigation links drops in muscle tone with sleepiness more directly than in previous investigations. The EMG changes were reliably demonstrated across participants and the NovAlert™ detected the EMG decrements when Hori stage 3 was entered. The alerting vibrations produced by the NovAlert™ occurred early enough in the SO process to be of practical importance as a sleepiness monitoring and alerting device.
Resumo:
The Active Isolated Stretching (AIS) technique proposes that by contracting a muscle (agonist) the opposite muscle (antagonist) will relax through reciprocal inhibition and lengthen without increasing muscle tension (Mattes, 2000). The clinical effectiveness of AIS has been reported but its mechanism of action has not been investigated at the tissue level. Proposed mechanisms for increased range of motion (ROM) include mechanical or neural changes, or an increased stretch tolerance. The purpose of the study was to investigate changes in mechanical properties, i.e. stiffness, of skeletal muscle in response to acute and long-term AIS stretching for the hamstring muscle group. Recreationally active university-aged students (female n=8, male n=2) classified as having tight hamstrings, by a knee extension test, volunteered for the study. All stretch procedures were performed on the right leg, with the left leg serving as a control. Each subject was assessed twice: at an initial session and after completing a 6-week AIS hamstring stretch training program. For both test sessions active knee extension (ROM) to a position of "light irritation", passive resisted torque and stiffness were determined before and after completion of the AIS technique (2x10 reps). Data were collected using a Biodex System 3 Pro (Biodex Medical Systems, NY, USA) isokinetic dynamometer. Surface electromyography (EMG) was used to monitor vastus lateralis (VL) and hamstring muscle activity during the stretching movements. Between test sessions, 2x10 reps of the AIS bent knee hamstring stretch were performed daily for 6-weeks.
Resumo:
The present study examined a wrist extension-to-flexion contraction pattern that was theorized to result in proprioceptive neuromuscular facilitation. However, the “reversal of antagonists” contraction pattern may have, alternatively, interfered with motor learning-related increases in strength. Participants (N=24) were matched on predicted strength and randomly assigned to either the control or experimental group. Training occurred during three test sessions within a one-week period. Retention and transfer (crossed-condition) tests were administered during a fourth test session two- weeks later. Both groups exhibited comparable increases in strength (20.2%) and decreases in muscle coactivation (35.2%), which were retained and transferred. Decreases in error and variability of the torque traces were associated with parallel decreases in variability of muscle activity. The reversal of antagonists technique did not interfere with motor learning-related increases in strength and decreases in variability. However, the more complex contraction pattern failed to result in proprioceptive neuromuscular facilitation of strength.
Resumo:
Localized muscular fatigue has been identified to have detrimental effects on balance control, an important skill for everyday life. Manipulation of attention focus instructions has been shown to benefit performance of various motor skills including balance and has been found to facilitate endurance during fatiguing tasks. The purpose of this thesis was to determine if the use of attention focus instructions could attenuate the effects of muscular fatigue on balance control. Twenty-four participants performed a balance task (two-legged stance on an unstable platform) before and after a fatigue protocol. Trunk sway, platform excursions, and lower limb muscle activity was measured. Results suggest that use of either internal or external attention focus instructions can reduce the immediate effects of muscular fatigue of the lower limb on balance control as shown through reduced trunk sway and platform excursions. These results have relevance for individuals performing balance tasks in a fatigued state.
Resumo:
The purpose of this study was to determine the influence of an ongoing cognitive task on an individual’s ability to generate a compensatory arm response. Twenty young and 16 older adults recovered their balance from a support surface translation while completing a cognitive (counting) task of varying difficulty. Surface electromyographic (EMG) recordings from the shoulders and kinematics of the right arm were collected to quantify the compensatory arm response. Results indicated that the counting task, regardless of its difficulty as well as the age of the individual, had minimal influence on the onset or magnitude of arm muscle activity that occurred following a loss of balance. In contrast to previous research, this study’s findings suggest that the cortical or cognitive resources utilized by the cognitive task are not relied upon for the generation of compensatory arm responses and that older adults are not disproportionately affected by dual-tasking than young adults.
Resumo:
Pyruvate dehydrogenase (PDH) is an important regulator of carbohydrate oxidation during exercise and its activity can be down-regulated by an increase in dietary fat. The purpose of this study was to determine the acute metabolic effects of differential dietary fatty acids on the activation of PDH in its active form (PDHa) at rest and at the onset of moderate-intensity exercise. University-aged male subjects (n=7) underwent 2 fat loading trials spaced at least 2 weeks apart. Subjects consumed saturated (SFA) or polyunsaturated (PUFA) fat over the course of 5 hours. Following this, participants cycled at 65% VO2 max for 15 min. Muscle biopsies were taken prior to and following fat loading and at 1 min exercise. Plasma free fatty acids increased from 0.15 ± 0.07 to 0.54 ± 0.19 mM over 5 hours with SFA and from 0.1 1 ± 0.04 to 0.35 ±0.13 mM with PUFA. PDHa activity was unchanged following fat loading, but increased at the onset of exercise in the SFA trial, from 1 .4 ± 0.4 to 2.2 ± 0.4 /xmol/min/kg wet wt. This effect was negated in the PUFA trial (1 .2 ± 0.3 to 1 .3 ± 0.3 pimol/min/kg wet wt.). PDH kinase (PDK) was unchanged in both trials, suggesting that the attenuation of PDHa activity with PUFA was a result of changes in the concentrations of intramitochondrial effectors, more specifically intramitochondrial NADH or Ca^*. Our findings suggest that attenuated PDHa activity participates in the preferential oxidation of PUFA during moderateintensity exercise.
Resumo:
Activation of pyruvate dehydrogenase (PDH), which converts pyruvate into acetyl-CoA, is accomplished by a pair of specific phosphatases (PDP 1 & 2). A cross-sectional study investigating the effect of aerobic capacity on PDP activity and expression found that: 1) PDP activity and PDP! protein expression were positively correlated with most aerobic capacity measures in males (n=lS), but not females (n=12); 2) only males showed a positive correlation between PDP activity and PDPl protein expression (r=0.47; p=O.05), indicating that the increase in PDP activity in males is largely explained by increased PDPl protein expression, but that females rely on another level for PDP activity regulation; and 3) PDP} and Ela protein expression increase in unison when expressed relative to the E2 core. These data suggest that with increased aerobic capacity there is an increased capacity for carbohydrate oxidation through PDH, via El a, and an increased ability to activate PDH, via PDP, when exercising maximally.
Resumo:
Pyruvate dehydrogenase (PDH) plays an important role in regulating carbohydrate oxidation in skeletal muscle. PD H is deactivated by a set of PD H kinases (PD K 1-4) with PDK2 and 4 being the predominant isoforms in skeletal muscle. PDK2 is highly sensitive to pyruvate inhibition, and is the most abundant isoform, while PDKI and 4 protein content are normally lower. This study examined the PDK isoform content and PDHa activation in muscle at rest and 10 and 40 Hz stimulation from PDK2 knockout (PDK2KO) mice to delineate the role of PDK2 in activating the PDH complex during low and moderate intensity muscle contraction. PDHa activity was lower in PDK2KO mice during contraction while total PDK actitvity was -4 fold lower. PDK4 protein was not different, however PDKI partially compensated for the lack of PDK2 and was -56% higher than WT. PDKI is a very potent inhibitor of the PDH complex due to its phosphorylation site specificity and allosteric regulation. These results suggest that the site specificity and allosteric regulatory properties of the individual PDK isoforms are more important than total PDK activity in determining transformation of the complex and PDHa activity during acute muscle contraction.
Resumo:
This thesis investigated whole body glucose disposal and the adaptive changes in skeletal muscle carbohydrate metabolism following 28 d of supplementation with 1000 mg R(+)-lipoic acid in young sedentary males (age, 22.1 ± 0.67 yr, body mass, 78.7 ± 10.3 kg, n=9). In certain individuals, lipoic acid decreased the 180-min area under the glucose concentration and insulin concentration curve during an oral glucose tolerance test (OGTT) (n=4). In the same individuals, lipoic acid supplementation decreased pyruvate dehydrogenase kinase activity (PDK) (0.09 ± 0.024 min"^ vs. 0.137 ± 0.023 min'\ n=4). The fasting levels of the activated form of pyruvate dehydrogenase (PDHa) were decreased following lipoic acid (0.42 ± 0.13 mmol-min'kg'^ vs. 0.82 ± 0.32 mmolrnin'^kg"\ n=4), yet increased to a greater extent during the OGTT (1.21 ± 0.34 mmol-min'kg"' vs. 0.81 ±0.13 mmolmin"'kg'\ n=4) following hpoic acid supplementation. No changes were demonstrated in the remaining subjects (n=5). It was concluded that improved glucose clearance during an OGTT following lipoic acid supplementation is assisted by increased muscle glucose oxidation through increased PDHa activation and decreased PDK activity in certain individuals.
Resumo:
BACKGROUND: Capillaries function to provide a surface area for nutrient and waste exchange with cells. The capillary supply of skeletal muscle is highly organized, and therefore, represents an excellent choice to study factors regulating diffusion. Muscle is comprised of three specific fibre types, each with specific contractile and metabolic characteristics, which influence the capillary supply of a given muscle; in addition, both environmental and genetic factors influence the capillary supply, including aging, physical training, and various disease processes. OBJECTIVE: The present study was undertaken to develop and assess the functionality of a data base, from which virtual experiments can be conducted on the capillary supply of human muscle, and the adaptations of the capillary bed in muscle to various perturbations. METHODS: To create the database, an extensive search of the literature was conducted using various search engines, and the three key words - "capillary, muscle, and human". This search yielded 169 papers from which the data for the 46 variables on the capillary supply and fibre characteristics of muscle were extracted for inclusion in the database. A series of statistical analyses (ANOVA) were done on the capillary database to examine differences in skeletal muscle capillarization and fibre characteristics between young and old individuals, between healthy and diseased individuals, and between untrained, endurance trained, endurance welltrained, and resistance trained individuals, using SAS. RESULTS: There was a significantly higher capillarization in the young compared to the old individuals, in the healthy compared to the diseased individuals, and in the endurance-trained and endurance well-trained compared to the untrained individuals. CONCLUSIONS: The results of this study support the conclusion that the capillary supply of skeletal muscle is closely regulated by factors aimed at optimizing oxygen and nutrient supply and/or waste removal in response to changes in muscle mass and/or metabolic activity.
Resumo:
University, 2006 Dr. Sandra J. Peters Pyruvate dehydrogenase (PDH) catalyses the decarboxylation of pyruvate, to form acetyl-CoA. PDH activity is down-regulated by intrinsic PDH kinases (predominantly PDK2 and PDK4 isoforms), but the understanding of the PDK isoform distribution and adaptation to nutritional stresses has been restricted to mixed mitochondrial populations, and not delineated between subsarcolemmal (SS) and intermyofibrillar (IMF) subpopulations. SS and IMF mitochondria exhibit distinct morphological and biochemical properties; however the functional differences are not well understood. This study investigated the effect of fed (FED) versus 48 h total foodrestriction (FR) on rat red gastrocnemius muscle PDK2 and 4 isoform content in SS and IMF mitochondria. PDK4 content was ~3-5 fold higher in SS mitochondria compared to IMF (p=0.001), and increased with FR -3-4- fold in both subpopulations (p<0.001). PDK2 was -2.5-4 fold higher in SS mitochondria compared to IMF (p=0.001), but PDK2 was unaltered with FR. Citrate synthase activity (|imol/min/mg mitochondrial protein) was not different between either subpopulation. As well there were no significant differences between mitochondrial subpopulations in PDH complex components in both fed and FR states. These results demonstrate that there is a markedly higher content of both PDK isofonns in SS compared to IMF mitochondria. Although PDK2 does not increase in either subpopulation in response to FR, PDK4 increases to a similar extent in both SS and IMF after 48 h food-restriction.
Resumo:
The time course for the reversal of the adaptive increase in pyruvate dehydrogenase kinase (PDK) activity following a 6d high fat diet (HP: 4.2 ± 0.2 % carbohydrate; 75.6 ± 0.4 % fat; 19.5 ± 0.8 % protein) was investigated in human skeletal muscle (vastus lateralis). HF feeding increased PDK activity by 44% (from 0.081 ± 0.025 min"' to 0.247 ± 0.025 mm\p < 0.05). Following carbohydrate re-feeding, (88% carbohydrate; 5% fat; 7% protein), PDK activity had returned to baseline (0.111 ± 0.014 min"') within 3h of re-feeding. The active fraction of pyruvate dehydrognease (PDHa) was depressed following 6d of the HF diet (from 0.89 ± 0.21 mmol/min/kg WW to 0.32 ± 0.05 mmol/min/kg ww,p <0.05) and increased to pre-HF levels by 45 min of post re-feeding (0.74 ±0.19 mmol/min/kg ww) and remained elevated for 3h. Western blotting analysis of the PDK isoforms, PDK4 and PDK2, revealed a 31% increase in PDK4 protein content following the HF diet, with no change in PDK2 protein. This adaptive increase in PDK4 protein content was reversed with carbohydrate re-feeding. It was concluded that the adaptive up-regulation in PDK activity and PDK4 protein content was fiilly reversed by 3h following carbohydrate re-feeding.
Resumo:
Diabetes mellitus is a disorder of inadequate insulin action and consequent high blood glucose levels. Type 2 diabetes accounts for the majority of cases of the disease and is characterized by insulin resistance and relative insulin deficiency resulting in metabolic deregulation. It is a complex disorder to treat as its pathogenesis is not fully understood and involves a variety of defects including ~-cell failure, insulin resistance in the classic target tissues (adipose, muscle, liver), as well as defects in a-cells and kidney, brain, and gastrointestinal tissue. Present oral treatments, which aim at mimicking the effects of insulin, remain limited in their efficacy and therefore the study of the effects of novel compounds on insulin target tissues is an important area of research both for potentially finding more treatment options as well as for increasing our knowledge of metabolic regulation in health and disease. In recent years the extensively studied polyphenol, resveratrol, has been reported to have antidiabetic effects showing that it increases glucose uptake by skeletal muscle cells and prevents fatty acid-induced insulin resistance in vitro and in vivo. Naringenin, a citrus flavonoid with structural similarities to resveratrol, is reported to have antioxidan.t, antiproliferative, anticancer, and anti-inflammatory properties. Effects on glucose and lipid metabolism have also been reported including blood glucose and lipid lowering effects. However, whether naringenin has insulinlike effects is not clear. In the present study the effects of naringenin on glucose uptake in skeletal muscle cells are examined and compared with those of insulin. Naringenin treatment of L6 myotubes increased glucose uptake in a dose- and time dependent manner and independent of insulin. The effects of naringenin on glucose uptake achieved similar levels as seen with maximum insulin stimulation and its effect was additive with sub-maximal insulin treatment. Like insulin naringenin treatment did not increase glucose uptake in myoblasts. To elucidate the mechanism involved in naringenin action we looked at its effect on phosphatidylinositol 3-kinase (PI3K) and Akt, two signalling molecules that are involved in the insulin signalling cascade leading to glucose uptake. Naringenin did not stimulate basal or insulinstimulated Akt phosphorylation but inhibition of PI3K by wortmannin partially repressed the naringenin-induced glucose uptake. We also examined naringenin's effect on AMP-activated protein kinase (AMPK), a molecule that is involved in mediating glucose uptake by a variety of stimuli. Naringenin stimulated AMPK phosphorylation and this effect was not inhibited by wortmannin. To deduce the nature of the naringenin-stimulated AMPK phosphorylation and its impact on glucose uptake we examined the role of several molecules implicated in mod.ulating AMPK activity including SIRTl, LKB 1, and ca2+ Icalmodulin-dependent protein kinase kinase (CaMKK). Our results indicate that inhibition of SIRTI did not prevent the naringeninstimulated glucose uptake Of. AMPK phosphorylation; naringenin did not stimulate LKB 1 phosphorylation; and inhibition of CaMKK did not prevent naringeninstimulated glucose uptake. Inhibition of AMPK by compound C also did not prevent naringenin-stimulated glucose uptake but effectively inhibited the phosphorylation of AMPK suggesting that AMPK may not be required for the naringenin-stimulated glucose uptake.
Resumo:
Neuropeptides are the largest group of signalling chemicals that can convey the information from the brain to the cells of all tissues. DPKQDFMRFamide, a member of one of the largest families of neuropeptides, FMRFamide-like peptides, has modulatory effects on nerve-evoked contractions of Drosophila body wall muscles (Hewes et aI.,1998) which are at least in part mediated by the ability of the peptide to enhance neurotransmitter release from the presynaptic terminal (Hewes et aI., 1998, Dunn & Mercier., 2005). However, DPKQDFMRFamide is also able to act directly on Drosophila body wall muscles by inducing contractions which require the influx of extracellular Ca 2+ (Clark et aI., 2008). The present study was aimed at identifying which proteins, including the membrane-bound receptor and second messenger molecules, are involved in mechanisms mediating this myotropic effect of the peptide. DPKQDFMRFamide induced contractions were reduced by 70% and 90%, respectively, in larvae in which FMRFamide G-protein coupled receptor gene (CG2114) was silenced either ubiquitously or specifically in muscle tissue, when compared to the response of the control larvae in which the expression of the same gene was not manipulated. Using an enzyme immunoassay (EIA) method, it was determined that at concentrations of 1 ~M- 0.01 ~M, the peptide failed to increase cAMP and cGMP levels in Drosophila body wall muscles. In addition, the physiological effect of DPKQDFMRFamide at a threshold dose was not potentiated by 3-lsobutyl-1-methylxanthine, a phosphodiesterase inhibitor, nor was the response to 1 ~M peptide blocked or reduced by inhibitors of cAMP-dependent or cGMP-dependent protein kinases. The response to DPKQDFMRFamide was not affected in the mutants of the phosholipase C-~ (PLC~) gene (norpA larvae) or IP3 receptor mutants, which suggested that the PLC-IP3 pathway is not involved in mediat ing the peptide's effects. Alatransgenic flies lacking activity of calcium/calmodul in-dependent protein kinase (CamKII showed an increase in muscle tonus following the application of 1 JlM DPKQDFMRFamide similar to the control larvae. Heat shock treatment potentiated the response to DPKQDFMRFamide in both ala1 and control flies by approximately 150 and 100 % from a non heat-shocked larvae, respectively. Furthermore, a CaMKII inhibitor, KN-93, did not affect the ability of peptide to increase muscle tonus. Thus, al though DPKQDFMRFamide acts through a G-protein coupled FMRFamide receptor, it does not appear to act via cAMP, cGMP, IP3, PLC or CaMKl1. The mechanism through which the FMRFamide receptor acts remains to be determined.