4 resultados para Multi-model inference
em Brock University, Canada
Resumo:
Complex networks can arise naturally and spontaneously from all things that act as a part of a larger system. From the patterns of socialization between people to the way biological systems organize themselves, complex networks are ubiquitous, but are currently poorly understood. A number of algorithms, designed by humans, have been proposed to describe the organizational behaviour of real-world networks. Consequently, breakthroughs in genetics, medicine, epidemiology, neuroscience, telecommunications and the social sciences have recently resulted. The algorithms, called graph models, represent significant human effort. Deriving accurate graph models is non-trivial, time-intensive, challenging and may only yield useful results for very specific phenomena. An automated approach can greatly reduce the human effort required and if effective, provide a valuable tool for understanding the large decentralized systems of interrelated things around us. To the best of the author's knowledge this thesis proposes the first method for the automatic inference of graph models for complex networks with varied properties, with and without community structure. Furthermore, to the best of the author's knowledge it is the first application of genetic programming for the automatic inference of graph models. The system and methodology was tested against benchmark data, and was shown to be capable of reproducing close approximations to well-known algorithms designed by humans. Furthermore, when used to infer a model for real biological data the resulting model was more representative than models currently used in the literature.
Object-Oriented Genetic Programming for the Automatic Inference of Graph Models for Complex Networks
Resumo:
Complex networks are systems of entities that are interconnected through meaningful relationships. The result of the relations between entities forms a structure that has a statistical complexity that is not formed by random chance. In the study of complex networks, many graph models have been proposed to model the behaviours observed. However, constructing graph models manually is tedious and problematic. Many of the models proposed in the literature have been cited as having inaccuracies with respect to the complex networks they represent. However, recently, an approach that automates the inference of graph models was proposed by Bailey [10] The proposed methodology employs genetic programming (GP) to produce graph models that approximate various properties of an exemplary graph of a targeted complex network. However, there is a great deal already known about complex networks, in general, and often specific knowledge is held about the network being modelled. The knowledge, albeit incomplete, is important in constructing a graph model. However it is difficult to incorporate such knowledge using existing GP techniques. Thus, this thesis proposes a novel GP system which can incorporate incomplete expert knowledge that assists in the evolution of a graph model. Inspired by existing graph models, an abstract graph model was developed to serve as an embryo for inferring graph models of some complex networks. The GP system and abstract model were used to reproduce well-known graph models. The results indicated that the system was able to evolve models that produced networks that had structural similarities to the networks generated by the respective target models.
Resumo:
The academic study of place has been generally defined by two distinct and highly refined discourses within outdoor recreation research: place attachment and sense of place. Place attachment generally describes the intensity of the place relationship, whereas sense of place approaches place from a more holistic and intimate orientation. This study bridges these two methodological and theoretical separate areas of place research together by re-conceptualizing the way in which place relationships are viewed within outdoor recreation research. The Psychological Continuum Model is used to extend the language of place attachment to incorporate more of the philosophy of sense of place while attending to the empirical strength and utility of place attachment. This extension results in the term place allegiance being coined to depict the strong and profound relationships outdoor recreationists build with their places of outdoor recreation. Using a concurrent mixed methods research design, this study explored place allegiance via an online survey (n = 437) and thirteen in-depth qualitative interviews with outdoor recreationists. Results indicate that place allegiance can be measured through a multi-dimensional model of place allegiance that incorporates behaviours, importance, resistance, knowledge and symbolic value. In addition, place allegiance was found to be related to an individual's influence on life course and his/her willingness to exhibit preservation and protection tendencies. Place allegiance plays an important role in acknowledging the importance of authentic place relationships in an effort to confront placelessness. Wilderness recreation is an important avenue for outdoor recreationists to build strong place relationships.
Resumo:
In the scope of the current thesis we review and analyse networks that are formed by nodes with several attributes. We suppose that different layers of communities are embedded in such networks, besides each of the layers is connected with nodes' attributes. For example, examine one of a variety of online social networks: an user participates in a plurality of different groups/communities – schoolfellows, colleagues, clients, etc. We introduce a detection algorithm for the above-mentioned communities. Normally the result of the detection is the community supplemented just by the most dominant attribute, disregarding others. We propose an algorithm that bypasses dominant communities and detects communities which are formed by other nodes' attributes. We also review formation models of the attributed networks and present a Human Communication Network (HCN) model. We introduce a High School Texting Network (HSTN) and examine our methods for that network.