7 resultados para Mosquitoes.

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many species of Anopheles mosquitoes (Diptera: Culicidae) are now recognized as species complexes whose members are often indistinguishable morphologically but identifiable based on ecological, genetic, or behavioural data. Because the members of species complexes often differ in their vector potential, accurate identification of vector species is essential for successful mosquito control. To investigate the cryptic species status of Anopheles mosquitoes in Canada, specimens were collected from across the country and examined using morphological, molecular, and ecological data. Six of the seven traditionally recognised species from Canada were collected from locations in British Columbia, Quebec, Newfoundland and Labrador, and throughout Ontario, including Anopheles barberi, An. earlei, An. freeborni, An. punctipennis, An. quadrimaculatus s.l., and An. walkeri. Variation in polymorphic traits within An. earlei, An. punctipennis, and An. quadrimaculatus s.l. were quantified and egg morphology examined using scanning electron microscopy. Morphological identification of adult and larval specimens suggested that two described cryptic species, An. perplexens and An. smaragdinus, were present in Canada. DNA sequence data were analysed for evidence of cryptic species using three molecular markers: COl, ITS2, and ITS!. Intraspecific COl variation was very low in most species «1 %), except for An. punctipennis with 2% sequence divergence between those from British Columbia (BC) and Ontario (ON), and An. walkeri with 7% sequence divergence between populations from Manitoulin Island (NO) and Long Point Provincial Park (LP). Similar patterns were also seen using ITS2 and ITS 1. Therefore, molecular data revealed the presence of two putative cryptic species within two species examined (i.e., An. walkeri and An. punctipennis), corresponding to collection location (i.e., NO vs. LP and BC vs. ON, respectively). Surprisingly, there was no molecular support for the presence of either An. perplexens or An. smaragdinus in Canada despite the morphological assessments. Ecological data from all collection sites were recorded and are available in an online database designed to manage all collection and identification data. Current bionomic information, including regional abundance, larval habitat, and species associations, was determined for each species. This multidisciplinary study of Anopheles mosquitoes is the first detailed investigation of these potential disease vectors in Canada and demonstrates the importance of an integrated approach to anopheline systematics that includes molecular data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sugar-feeding ecology of dipteran vectors has recently been targeted because it presents opportunities to inoculate common food sources for these dipterans with entomopathogenic bacteria as a means of controlling the population of host-seeking adult dipteran vectors. Whereas this approach to vector control holds some promise, differences in the nutrient composition and concentration in sugary food sources can influence the food selection pattern of dipteran vectors and potentially confound the outcomes of field trials on the efficacy of entomopathogenic bacteria as vector control agents. Further, nutrient components of bacteria-inoculated artificial diets may present unintended effects of extending the survivorship or fecundity of the target population and potentially render the whole approach counterproductive. The present study investigated the diet-specific factors that influence the foraging decisions of female Simulium venustum/verecundum (Diptera: Simuliidae) and female Anopheles stephensi (Diptera: Culicidae) on artificial nectar and honeydew. Paired choice experiments showed that the black flies forage more frequently from high calorie diets, which contained melezitose, or those diets that contained amino acids, compared to low calorie melezitose-free diets or amino acid-free diets. The mosquitoes however displayed a more random diet selection pattern. The effects of sugary diets on certain life-history traits considered to be important to the ecological fitness of the black flies and mosquitoes were also investigated. Sugary diets had no significant effect on the survivorship and fecundity of the black flies, but they influenced the resistance of Leucocytozoon-infected flies to the parasite. Amino acid-containing diets appeared to extend the survival of mosquitoes, and also allowed them to take more vertebrate blood when they blood fed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the field, mosquitoes characteristically feed on sugars soon after emergence and intermittently during their adult lives. Sugar meals are commonly derived from plant nectar and homopteran honeydew, and without them, adults can only survive for a few days on larval reserves. In addition to sugar, females of most species rely on blood for the initiation and maintenance of egg development; thus their reproductive success depends to some extent on the availability of blood hosts. Males, on the other hand, feed exclusively on sugars. Consequently, their sexual maturation and reproductive success is largely dependent upon access to sugar sources. Plant nectar and homopteran honeydew are the two main sugar sources utilized by mosquitoes in the wild. Previous laboratory studies had shown that differences between nectar sources can affect the survivorship and biting frequency of disease vectoring mosquitoes. However, little is known on how sugar composition influence the reproductive processes in male mosquitoes. Male mosquitoes transfer accessory gland proteins and other hormones to their mates along with sperm during mating. In the female, these seminal fluid constituents exert their influence on reproductive genes that control ovulation and vitellogenesis. The present study tests the hypothesis that the mates of males consuming different sugar meals will exhibit varying levels of induction of vitellogenin (a gene which regulates the expression of egg yolk precursor proteins). Real-time quantitative RT-PCR was used to investigate how each sugar meal indirectly influences vitellogenin mRNA abundance in female Anopheles stephensi following mating. Results indicate that mates of nectar-fed males exhibit 2-fold greater change in vitellogenin expression than the mates of honeydew-fed males. However, this response did not occur in non-blood fed controls. These findings suggest that the stimulatory effect of mating on vitellogenesis in blood meal-reliant (i.e. anautogenous) mosquitoes may only be synergistic in nature. The present study also sought to compare the potential fitness costs of mating incurred by females that do not necessarily require a blood meal to initiate a reproductive cycle (i.e., exhibit autogeny). Females of the facultatively autogenous mosquito, Culex molestus were allowed to mate with males sustained on either nectar or honedyew. Mean lifetime fecundity and survivorship of females under the two different mating regimes were then recorded. Additionally, one-dimensional gel electrophoresis was used to verify the transfer of male accessory gland proteins to the sperm storage organs of females during mating.While there was no significant difference in survival between the test treatments, the mates of nectar-fed males produced 11% more eggs on average than mates of honeydew-fed males. However, additional data are needed to justify the extrapolation of these findings to natural settings. These findings prompt further investigation as the differences caused by diet variation in males may be reflected across other life history traits such as mating frequency and insemination capacity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The goal ofthis literature review is to inform the reader on several aspects of West Nile Virus (WNV) transmission by its mosquito vector, Culex pipiens and to elucidate how Cx. pipiens and WNV are intertwined. The first few sections of the literature review describe the life cycle and blood feeding behaviours ofmosquitoes so that baseline data ofmosquito biology are established. In addition to explaining how and why a mosquito blood feeds, the section on "Blood Meal Analysis" describes the different methods for determining the vertebrate source of mosquito blood meals and a brief history of these testing methods. Since this thesis looks at the feeding behaviour of Cx. pipiens, it is important to know how to determine what they are feeding upon. Discussion on other mosquito-borne diseases related to WNV gives a broader perspective to the thesis, and examines other diseases that have occurred in Ontario in the past. This is followed by background information on WNV and theories on how this virus came to North America and how it relates to Cx. pipiens. The final sections discuss Cx. pipiens and give background information to how this species of mosquito exists and behaves within North America.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since the discovery of West Nile (WN) virus in the Western Hemisphere many surveillance programs have been implemented to monitor the epidemiology and genetic variation of WN virus in North America. This project was based on the WN virus Adult Mosquito Identification and Diagnostic Program conducted at Brock University for Ontario, Canada, during the 2002 and 2003 transmission seasons. There are three sections to this thesis. The first section investigated which mosquito species carry WN virus in Ontario, Canada throughout the 2002-2003 transmission seasons. It was found that from the 2002 data, eight mosquito species were detected with WN virus (Aedes vexans, Anopheles punctipennis, Coquilleltidia perlurbans, Culex salinarius, Cx. pipiens, Cx. resluans, Ochlerolalus Irivillalus and Och. Iriserialus) and 7.19% of the total mosquito pools tested were found to be WN virus positive (129 positive poolsll, 793 total pools tested). In 2003, WN virus was detected in only five mosquito species (Ae. vexans, Cx. salinarius, Och. Iriserialus, Cx. pipiens and Cx. resluans) and 1.42% of the total mosquito pools tested were WN virus positive (101 positive poolsl7,1 01 total pools tested). WN virus positive mosquito pools were detected 3-4 weeks earlier in 2002 compared to 2003 data. The second section investigated the actual infection rate (IR) of clearly identified Cx. pipiens and Cx. resluans from the 2002 outbreak. It was found that significantly more ex. resluans were infected with WN virus compared to ex. pipiens. The third section investigated the degree of variability of the WN virus genome. A 879 nucleotide section of the WN virus genome was amplified from 21 American Crows and 20 adult female mosquitoes from Ontario, Canada, and compared to the homologous region of the original New York 1999 Chilean Flamingo sequence (NY99FL). Seventy-two nucleotides from Ontario WN virus sequences showed variability compared to NY99FL with 10 synapotypic changes. Phylogenetic analysis revealed a close relationship between Ontario and US WN virus sequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Floral nectar is thought to be the primary carbohydrate source for most dipteran species. However, it has been shown that black flies (Burgin & Hunter 1997 a,b,c), mosquitoes (Foster 1995; Burkett et al. 1999; Russell & Hunter 2002), deer flies (Magnarelli & Burger 1984; Janzen & Hunter 1998; Ossowski & Hunter 2000), horse flies (Schutz & Gaugler 1989; Hunter & Ossowski 1999) and sand flies (MacVicker et al. 1990; Wallbanks et al. 1990; Cameron et al. 1992, 1995; Schlein & Jacobson 1994, 1999; Hamilton & EI Naiem 2000) feed on homopteran honeydew as well as floral nectar. Prior to 1997 floral nectar was thought to be the main source of carbohydrates for black flies. However, Burgin & Hunter (1 997a) demonstrated that up to 35% of black flies had recently consumed meals of homo pte ran honeydew. This information has necessitated a re-assessment of many life history aspects of black flies. Attempts are being made to examine the effects of nectar versus honeydew on black fly fecundity and parasite transmission (Hazzard 2003). Recently, Stanfield and Hunter (unpublished data) have shown that in female black flies, honeydew sugars produce flights of longer distance and duration than do nectar sugars. This thesis examines two aspects of black fly biology as it relates to sugar meal consumption. First, the effects of honeydew and nectar on black fly longevity are examined. Second, the proximate causation behind longer flight performances in honeydew-fed flies will be examined. The comparison between these two sources is important because nectar is composed of mainly simple sugars (monosaccharides and disaccharides) whereas honeydew is composed of both simple and complex sugars (including trisaccharides and tetrasaccharides ).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The resurgence of malaria in highland regions of Africa, Oceania and recently in South America underlines the importance of the study of the ecology of highland mosquito vectors of malaria. Since the incidence of malaria is limited by the distribution of its vectors, the purpose of this PhD thesis was to examine aspects of the ecology of Anopheles mosquitoes in the Andes of Ecuador, South America. A historical literature and archival data review (Chapter 2) indicated that Anopheles pseudopunctipennis transmitted malaria in highland valleys of Ecuador prior to 1950, although it was eliminated through habitat removal and the use of chemical insecticides. Other anopheline species were previously limited to low-altitude regions, except in a few unconfirmed cases. A thorough larval collection effort (n=438 attempted collection sites) in all road-accessible parts of Ecuador except for the lowland Amazon basin was undertaken between 2008 - 2010 (Chapter 3). Larvae were identified morphologically and using molecular techniques (mitochondrial COl gene), and distribution maps indicated that all five species collected (Anopheles albimanus, An. pseudopunctipennis, Anopheles punctimacula, Anopheles oswaldoi s.l. and Anopheles eiseni) were more widespread throughout highland regions than previously recorded during the 1940s, with higher maximum altitudes for all except An. pseudopunctipennis (1541 m, 1930 m, 1906 m, 1233 m and 1873 m, respectively). During larval collections, to characterize species-specific larval habitat, a variety of abiotic and biotic habitat parameters were measured and compared between species-present and species-absent sites using chi-square tests and stepwise binary logistic regression analyses (Chapter 4). An. albimanus was significantly associated with permanent pools with sand substrates and An. pseudopunctipennis with gravel and boulder substrates. Both species were significantly associated with floating cyanobacterial mats and warmer temperatures, which may limit their presence in cooler highland regions. Anopheles punctimacula was collected more often than expected from algae-free, shaded pools with higher-than-average calculated dissolved oxygen. Anopheles oswaldoi s.l., the species occurring on the Amazonian side of the Andes, was associated with permanent, anthropogenic habitats such as roadside ditches and ponds. To address the hypothesis that human land use change is responsible for the emergence of multiple highland Anopheles species by creating larval habitat, common land uses in the western Andes were surveyed for standing water and potential larval habitat suitability (Chapter 5). Rivers and road edges provided large amounts of potentially suitable anopheline habitat in the western Andes, while cattle pasture also created potentially suitable habitat in irrigation canals and watering ponds. Other common land uses surveyed (banana farms, sugarcane plantations, mixed tree plantations, and empty lots) were usually established on steep slopes and had very little standing water present. Using distribution and larval habitat data, a GIS-based larval habitat distribution model for the common western species was constructed in ArcGIS v.l 0 (ESRI 2010) using derived data layers from field measurements and other sources (Chapter 6). The additive model predicted 76.4 - 97.9% of the field-observed collection localities of An. albimanus, An. pseudopunctipennis and An. punctimacula, although it could not accurately distinguish between species-absent and speciespresent sites due to its coarse scale. The model predicted distributional expansion and/or shift of one or more anopheline species into the following highland valleys with climate warming: Mira/Chota, Imbabura province, Tumbaco, Pichincha province, Pallatanga and Sibambe, Chimborazo province, and Yungilla, Azuay province. These valleys may serve as targeted sites of future monitoring to prevent highland epidemics of malaria. The human perceptions of malaria and mosquitoes in relation to land management practices were assessed through an interview-based survey (n=262) in both highlands and lowlands, of male and female land owners and managers of five property types (Chapter 7). Although respondents had a strong understanding of where the disease occurs in their own country and of the basic relationship among standing water, mosquitoes and malaria, about half of respondents in potential risk areas denied the current possibility of malaria infection on their own property. As well, about half of respondents with potential anopheline larval habitat did not report its presence, likely due to a highly specific definition of suitable mosquito habitat. Most respondents who are considered at risk of malaria currently use at least one type of mosquito bite prevention, most commonly bed nets. In conclusion, this interdisciplinary thesis examines the occurrence of Anopheles species in the lowland transition area and highlands in Ecuador, from a historic, geographic, ecological and sociological perspective.