2 resultados para Model Driven Architecture (MDA)
em Brock University, Canada
Resumo:
This lexical decision study with eye tracking of Japanese two-kanji-character words investigated the order in which a whole two-character word and its morphographic constituents are activated in the course of lexical access, the relative contributions of the left and the right characters in lexical decision, the depth to which semantic radicals are processed, and how nonlinguistic factors affect lexical processes. Mixed-effects regression analyses of response times and subgaze durations (i.e., first-pass fixation time spent on each of the two characters) revealed joint contributions of morphographic units at all levels of the linguistic structure with the magnitude and the direction of the lexical effects modulated by readers’ locus of attention in a left-to-right preferred processing path. During the early time frame, character effects were larger in magnitude and more robust than radical and whole-word effects, regardless of the font size and the type of nonwords. Extending previous radical-based and character-based models, we propose a task/decision-sensitive character-driven processing model with a level-skipping assumption: Connections from the feature level bypass the lower radical level and link up directly to the higher character level.
Resumo:
Palynomorphs from two siliciclastic margins were examined to gain insights into continental margin architecture. Sea level change is thought to be one of the primary controls on continental margin architecture. Because Late Neogene glacioeustasy has been well studied marine sediments deposited during the Late Neogene were examined to test this concept. Cores from the outer shelf and upper slope were taken from the New Jersey margin in the western North Atlantic Ocean and from the Sunda Shelf margin in the South China Sea. Continental margin architecture is often described in a sequence stratigraphic context. One of the main goals of both coring projects was to test the theoretical sequence stratigraphic models developed by a research group at Exxon (e.g. Wilgus et al., 1988). Palynomorphs provide one of the few methods of inferring continental margin architecture in monotonous, siliciclastic marine sediments where calcareous sediments are rare (e.g. New Jersey margin). In this study theoretical models of the palynological signature expected in sediment packages deposited during the various increments of a glacioeustatic cycle were designed. These models were based on the modem palynomorph trends and taphonomic factors thought to control palynomorph distribution. Both terrestrial (pollen and spores) and marine (dinocysts) palynomorphs were examined. The palynological model was then compared with New Jersey margin and Sunda Shelf margin sediments. The predicted palynological trends provided a means of identifying a complete cycle of glacioeustatic change (Oxygen Isotope Stage 5e to present) in the uppermost 80 meters of sediment on the slope at the New Jersey margin. Sediment availability, not sea meters of sediment on the slope at the New Jersey margin. Sediment availability, not sea level change, is thought to be the major factor controlling margin architecture during the late Pleistocene here at the upper slope. This is likely a function of the glacial scouring of the continents which significantly increases sediment availability during glacial stages. The subaerially exposed continental shelf during the lowstand periods would have been subject to significant amounts of erosion fi:om the proglacial rivers flowing fi-om the southern regions of the ice-sheet. The slope site is non-depositional today and was also non-depositional during the last full interglacial period. The palynomorph data obtained fi-om the South China Sea indicate that the major difference between the New Jersey Margin sites and the Sunda Shelf margin sites is the variation in sediment supply and the rate of sediment accumulation. There was significantly less variation in sediment supply between glacial and interglacial periods and less overall sediment accumulation at the Sunda Shelf margin. The data presented here indicate that under certain conditions the theoretical palynological models allow the identification of individual sequence stratigraphic units and therefore, allow inferences regarding continental margin architecture. The major condition required in this approach is that a complete and reliable database of the contemporaneous palynomorphs be available.