4 resultados para Miocene bacteria and mesofauna
em Brock University, Canada
Resumo:
The present study was carried out to test the hypothesis that photosynthetic bacteria contribute a large portion of the food of filter feeding zooplankton populations in Crawford Lake, Ontario. The temporal and spatial variations of both groups of organisms are strongly dependent on one another. 14 By using C-Iabelled photosynthetic bacteria. the ingestion and clearance rates of Daphnia pulex, ~. rosea, and Keratella spp were estimated during summer and fall of 1982. These quantitative estimations of zooplankton ingestion and clearence rates on photosynthetic bacteria comprised an original addition to the literature. Photosynthetic bacteria comprised a substantial portion of the diet of all four dominant zooplankton species. The evidence for this is based on the ingestion and clearance rates of the dominant zooplankton species. Ingestion rates of D. pulex and D. rosea ranged 5 5 -1 -1 - -- 5 - -- 5 from 8.3X10 -1 to 14.6XlO -1 cells.ind. hr and 8.1X10 to 13.9X10 cells.ind. hr • Their clearance rates ranged from 0.400 to 1.000 -1 -1 -1 -1 ml.ind. hr. and 0.380 to 0.930 ml.ind. hr • The ingestion and clearance -1 -1 -1 -1 rates of Keratella spp were 600 cell.ind. hr and 0.40 ul.ind. hr respectively. Clearance rates were inversely proportional to the concentration of food cells and directly proportional to the body size of the animals. It is believed that despite the very short reg~neration times of photosynthetic bacteria (3-8 hours) their population densities were controlled in part by the feeding rates of the dominant zooplankton in Crawford Lake. By considering the regeneration times of photosynthetic bacteria and the population clearance rates of zooplankton, it was estimated that between 16 to 52% and 11 to 35% of the PHotosynthetic bacteria were' consumed· by Daphnia· pulex. and Q.. rosea per day. The temporal and spatial distribution of Daphnia pulex, !.. rosea, Keratella quadrata, K. coChlearis and photosynthetic bacteria in Crawford Lake were also investigated during the period of October, 1981 to December, 1982. The photosynthetic bacteria in the lake, constituted a major food source for only those zooplankton Which tolerate anaerobic conditions. Changes in temperature and food appeared to correlate with the seasonal changes in zooplankton density. All four dominant species of zooplankton were abundant at the lake's surface (O-4m) during winter and spring and moved downwards with the thermocline as summer stratification proceeded. Photosynthetic bacteria formed a 2 m thick layer at the chemocline. The position of this photosynthetic bacterial J-ayer changed seasonally. In the summer, the bacterial plate moved upwards and following fall mixing it moved downwards. A vertical shift of O.8m (14.5 to 15.3m) was recorded during the period of June to December. The upper limit of the photosynthetic bacteria in the water column was controlled by dissolved oxygen, and sulfide concentrations While their lower limit was controlled by light intensity. A maximum bacterio- 1 chlorophyll concentration of 81 mg Bchl.l was recorded on August 9, 1981. The seasonal distribution of photosynthetic bacteria was controlledinpart' by ·theg.-"z1ai'_.Q;~.zoopl. ank:tCm;-.Qther -ciactors associated with zooplankton grazing were oxygen and sulfide concentrations.
Resumo:
One of the main objectives of the mid-Atlantic transect is to improve dating resolution of sequences and unconfonnity surfaces. Dinoflagellate cysts from two Ocean Drilling Program boreholes, the onshore Leg 174AX Ocean View Site and Leg 174A continental shelf Site 1071, are used to provide age estimates for sequences and unconfonnities fonned on the New Jersey continental margin during the Miocene epoch. Despite the occasional lack of dinocysts in barren and oxidized sections, dinocyst biochronology still offers greater age control than that provided by other microfossils in marginal marine environments. An early Miocene to late Miocene chronology based on ages detennined for the two study sites is presented. In addition, .palynofacies are used to unravel the systems tract character of the Miocene sequences and provide insight into the effects of taphonomy and preservation of palynomorphs in marginal marine and shelf environments under different ~ea level conditions. More precise placement of maximum flooding surfaces is possible through the identification of condensed sections and palynofacies shifts can also reveal subaerially exposed sections and surfaces not apparent in seismic or lithological analyses. The problems with the application of the pollen record in the interpretation of Miocene climate are also discussed. Palynomorphs provide evidence for a second-order lowering of sea level during the Miocene, onto which higher order sea level fluctuations are super-imposed. Correlation of sequences and unconfonnities is attempted between onshore boreholes and from the onshore Ocean View borehole to offshore Site 1071.
Resumo:
While nitrogen is critical for all plants, they are unable to utilize organically bound nitrogen in soils. Therefore, the majority of plants obtain useable nitrogen through nitrogen fixing bacteria and the microbial decomposition of organic matter. In the majority of cases, symbiotic microorganisms directly furnish plant roots with inorganic forms of nitrogen. More than 80% of all land plants form intimate symbiotic relationships with root colonizing fungi. These common plant/fungal interactions have been defined largely through nutrient exchange, where the plant receives limiting soil nutrients, such as nitrogen, in exchange for plant derived carbon. Fungal endophytes are common plant colonizers. A number of these fungal species have a dual life cycle, meaning that they are not solely plant colonizers, but also saprophytes, insect pathogens, or plant pathogens. By using 15N labeled, Metarhizium infected, wax moth larvae (Galleria mellonella) in soil microcosms, I demonstrated that the common endophytic, insect pathogenic fungi Metarhizium spp. are able to infect living soil borne insects, and subsequently colonize plant roots and furnish ts plant host with useable, insect-derived nitrogen. In addition, I showed that another ecologically important, endophytic, insect pathogenic fungi, Beauveria bassiana, is able to transfer insect-derived nitrogen to its plant host. I demonstrated that these relationships between various plant species and endophytic, insect pathogenic fungi help to improve overall plant health. By using 13C-labeled CO2, added to airtight plant growth chambers, coupled with nuclear magnetic resosnance spectroscopy, I was able to track the movement of carbon from the atmosphere, into the plant, and finally into the root colonized fungal biomass. This indicates that Metarhizium exists in a symbiotic partnership with plants, where insect nitrogen is exchanged for plant carbon. Overall these studies provide the first evidence of nutrient exchange between an insect pathogenic fungus and plants, a relationship that has potentially useful implications on plant primary production, soil health, and overall ecosystem stability.
Resumo:
An unusual postharvest spotting disease of the commercial mushroom, Agaricus bisporus, which was observed on a commercial mushroom farm in Ontario, was found to be caused by a novel pathovar of Pseudomonas tolaasii. Isolations from the discoloured lesions, on the mushroom pilei, revealed the presence of several different bacterial and fungal genera. The most frequently isolated genus being Pseudomonas bacteria. The most frequently isolated fungal genus was Penicillium. Of the bacteria and fungi assayed for pathogenicity to mushrooms, only Pseudomonas tolaasii was able to reproduce the postharvest spotting symptom. This symptom was typically reproduced 1 to 7 days postharvest, when mushroom pilei were inoculated with 101 to 105 cfu. Of the fungi tested for pathogenicity only a Penicillium sp. and Verticillium fungicola were shown to be pathogenic, however, neither produced the postharvest spotting symptom. The Pseudomonas tolaasii strain isolated from the postharvest lesions differed from a type culture (Pseudomonas tolaasii ATCC 33618) in the symptoms it produced on Agaricus bisporus pilei under the same conditions and at the same inoculum concentration. It was therefore designated a pathovar. This strain also differed from the type culture in its cellular protein profile. Neither the type culture, nor the mushroom pathogen was found to contain plasmid DNA. The presence of plasmid DNA is therefore not responsible for the difference in pathogenicity between the two strains.