4 resultados para Metal insulator transition

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purple bronze Li0.9Mo6O17 has attracted researchers for its low dimensionality and corresponding properties. Although it has been studied for nearly two decades, there are still some unsolved puzzles with this unique material. Single crystals of Li0.9Mo6O17 were grown using the temperature gradient flux technique in this research. The crystal growth was optimized by experimenting different conditions and good quality crystals were obtained. X-ray diffraction results have confirmed the right phase of the crystals. Resistivity measurements and magnetic susceptibility measurements were carried out, and anomalous electronic behaviors were found. All of the samples showed the metal-insulator transition near 20K, followed by behavior that differs from sample to sample: either superconducting, metallic or insulating behavior was observed below 2K. Li0.9Mo6O17 was considered as a quasi-one-dimensional crystal and also a superconducting crystal, which implies a dimensional crossover may occur at the metal-insulator transition. A two-band scenario of the Luttinger liquid model was used to fit the resistivity data and excellent results were achieved, suggesting that the Luttinger theory is a very good candidate for the explanation of the anomalous behavior of Li0.9Mo6O17. In addition, the susceptibility measurements showed Curie paramagnetism and some temperature independent paramagnetism at low temperature. The absence of any anomalous magnetic feature near 20K where the resistivity upturn takes place, suggests that a charge density wave mechanism, which has been proposed by some researchers, is not responsible for the unique properties of Li0.9Mo6O17.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The frequency dependence of the electron-spin fluctuation spectrum, P(Q), is calculated in the finite bandwidth model. We find that for Pd, which has a nearly full d-band, the magnitude, the range, and the peak frequency of P(Q) are greatly reduced from those in the standard spin fluctuation theory. The electron self-energy due to spin fluctuations is calculated within the finite bandwidth model. Vertex corrections are examined, and we find that Migdal's theorem is valid for spin fluctuations in the nearly full band. The conductance of a normal metal-insulator-normal metal tunnel junction is examined when spin fluctuations are present in one electrode. We find that for the nearly full band, the momentum independent self-energy due to spin fluctuations enters the expression for the tunneling conductance with approximately the same weight as the self-energy due to phonons. The effect of spin fluctuations on the tunneling conductance is slight within the finite bandwidth model for Pd. The effect of spin fluctuations on the tunneling conductance of a metal with a less full d-band than Pd may be more pronounced. However, in this case the tunneling conductance is not simply proportional to the self-energy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rates and products of the oxidation of diphenyl sulfide, phenyl methyl sulfide, p-chlorophenyl methyl sulfide and diphenyl sulfoxide have been determined. Oxidants included t-Bu02H alone, t-Bu02H plus molybdenum or vanadium catalysts and the molybdenum peroxo complex Mo0(02)2*HMPT. Reactions were chiefly carried out in ethanol at temperatures ranging from 20° to 65°C. Oxidation of diphenyl sulfide by t-Bu02H in absolute ethanol at 65°C followed second-order kinetics with k2 = 5.61 x 10 G M~1s"1, and yielded only diphenyl sulfoxide. The Mo(C0)g-catalyzed reaction gave both the sulfoxide and the sulfone with consecutive third-order kinetics. Rate = k3[Mo][t-Bu02H][Ph2S] + k^[Mo][t-Bu02H][Ph2S0], where log k3 = 12.62 - 18500/RT, and log k^ = 10.73 - 17400/RT. In the absence of diphenyl sulfide, diphenyl sulfoxide did not react with t-Bu02H plus molybdenum catalysts, but was oxidized by t-Bu02H-V0(acac)2. The uncatalyzed oxidation of phenyl methyl sulfide by t-Bu02H in absolute ethanol at 65°C gave a second-order rate constant, k = 3.48 x 10~"5 M^s""1. With added Mo(C0)g, the product was mainly phenyl methyl sulfoxide; Rate = k3[Mo][t-Bu02H][PhSCH3] where log k3 = 22.0 - 44500/RT. Both diphenyl sulfide and diphenyl sulfoxide react readily with the molybdenum peroxy complex, Mo0(02)2'HMPT in absolute ethanol at 35°C, yielding diphenyl sulfone. The observed features are mainly in agreement with the literature on metal ion-catalyzed oxidations of organic compounds by hydroperoxides. These indicate the formation of an active catalyst and the complexation of t-Bu02H with the catalyst. However, the relatively large difference between the activation energies for diphenyl sulfide and phenyl methyl sulfide, and the non-reactivity of diphenyl sulfoxide suggest the involvement of sulfide in the production of an active species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Our work on single molecule magnets and multifunctional magnetic materials is presented in four projects. In the first project we show for first time that heteroatomic-type pseudohalides, such as OCN-, can be employed as structure-directing ligands and ferromagnetic couplers in higher oxidation state metal cluster chemistry. The initial use of cyanato groups in Mn cluster chemistry has afforded structurally interesting MnII/III14 (1) and MnII/III/IV16 (2) clusters in which the end-on bridging cyanates show a preference in binding through their O-atom. The Mn14 compound shows entirely visible out-of-phase alternating currect signals below 5 K and large hysteresis loops below 2 K. Furthermore, the amalgamation of azido groups with the triethanolamine tripodal ligand in manganese carboxylate cluster chemistry has led to the isolation of a new ferromagnetic, high-nuclearity and mixed-valence MnII/III15Na2 (3) cluster with a large ground-state spin value of S = 14. In the second project we demonstrate a new synthetic route to purely inorganic-bridged, transition metal-azido clusters [CoII7 (4) and NiII7 (5)] and coordination polymers [{FeII/III2}n (6)] which exhibit strong ferromagnetic, SMM and long-range magnetic ordering behaviors. We also show that access to such a unique ferromagnetic class of inorganic, N-rich and O-free materials is feasible through the use of Me3SiN3 as the azido-ligand precursor without requiring the addition of any organic chelating/bridging ligand. In the last projects we have tried to bring together molecular magnetism and optics via the synthesis of multifunctional magnetic materials based on 3d- or 4f-metal ions. We decided to approach such challenge from two different directions: firstly, in our third project, by the deliberate replacement of non-emissive carboxylato ligands in known 3d-SMMs with their fluorescent analogues, without perturbing the metal-core structure and SMM properties (complexes 7, 8, and 9). The second route (last project) involves the use of naphthalene or pyridine-based polyalcohol bridging ligands for the synthesis of new polynuclear LnIII metal clusters (Ln = lanthanide) with novel topologies, SMM behaviors and luminescent properties arising from the increased efficiency of the “antenna” organic group. This approach has led us to the isolation of two new families of LnIII8 (complexes 10-13) and LnIII4 (complexes 14-20) clusters.