7 resultados para Mechanisms of Action
em Brock University, Canada
Resumo:
Drosophila melanogaster is a model system for examining the mechanisms of action of neuropeptides. DPKQDFMRFamide was previously shown to induce contractions in Drosophila body wall muscle fibres in a Ca(2+)-dependent manner. The present study examined the possible involvement of a G-protein-coupled receptor and second messengers in mediating this myotropic effect after removal of the central nervous system. DPKQDFMRFamide-induced contractions were reduced by 70% and 90%, respectively, in larvae with reduced expression of the Drosophila Fmrf receptor (FR) either ubiquitously or specifically in muscle tissue, compared with the response in control larvae in which expression was not manipulated. No such effect occurred in larvae with reduced expression of this gene only in neurons. The myogenic effects of DPKQDFMRFamide do not appear to be mediated through either of the two Drosophila myosuppressin receptors (DmsR-1 and DmsR-2). DPKQDFMRFamide-induced contractions were not reduced in Ala1 transgenic flies lacking activity of calcium/calmodulin-dependent protein kinase (CamKII), and were not affected by the CaMKII inhibitor KN-93. Peptide-induced contractions in the mutants of the phospholipase C-β (PLCβ) gene (norpA larvae) and in IP3 receptor mutants were similar to contractions elicited in control larvae. The peptide failed to increase cAMP and cGMP levels in Drosophila body wall muscles. Peptide-induced contractions were not potentiated by 3-isobutyl-1-methylxanthine, a phosphodiesterase inhibitor, and were not antagonized by inhibitors of cAMP-dependent or cGMP-dependent protein kinases. Additionally, exogenous application of arachidonic acid failed to induce myogenic contractions. Thus, DPKQDFMRFamide induces contractions via a G-protein coupled FMRFamide receptor in muscle cells but does not appear to act via cAMP, cGMP, IP3, PLC, CaMKII or arachidonic acid.
Resumo:
Neuropeptides are the largest group of signalling chemicals that can convey the information from the brain to the cells of all tissues. DPKQDFMRFamide, a member of one of the largest families of neuropeptides, FMRFamide-like peptides, has modulatory effects on nerve-evoked contractions of Drosophila body wall muscles (Hewes et aI.,1998) which are at least in part mediated by the ability of the peptide to enhance neurotransmitter release from the presynaptic terminal (Hewes et aI., 1998, Dunn & Mercier., 2005). However, DPKQDFMRFamide is also able to act directly on Drosophila body wall muscles by inducing contractions which require the influx of extracellular Ca 2+ (Clark et aI., 2008). The present study was aimed at identifying which proteins, including the membrane-bound receptor and second messenger molecules, are involved in mechanisms mediating this myotropic effect of the peptide. DPKQDFMRFamide induced contractions were reduced by 70% and 90%, respectively, in larvae in which FMRFamide G-protein coupled receptor gene (CG2114) was silenced either ubiquitously or specifically in muscle tissue, when compared to the response of the control larvae in which the expression of the same gene was not manipulated. Using an enzyme immunoassay (EIA) method, it was determined that at concentrations of 1 ~M- 0.01 ~M, the peptide failed to increase cAMP and cGMP levels in Drosophila body wall muscles. In addition, the physiological effect of DPKQDFMRFamide at a threshold dose was not potentiated by 3-lsobutyl-1-methylxanthine, a phosphodiesterase inhibitor, nor was the response to 1 ~M peptide blocked or reduced by inhibitors of cAMP-dependent or cGMP-dependent protein kinases. The response to DPKQDFMRFamide was not affected in the mutants of the phosholipase C-~ (PLC~) gene (norpA larvae) or IP3 receptor mutants, which suggested that the PLC-IP3 pathway is not involved in mediat ing the peptide's effects. Alatransgenic flies lacking activity of calcium/calmodul in-dependent protein kinase (CamKII showed an increase in muscle tonus following the application of 1 JlM DPKQDFMRFamide similar to the control larvae. Heat shock treatment potentiated the response to DPKQDFMRFamide in both ala1 and control flies by approximately 150 and 100 % from a non heat-shocked larvae, respectively. Furthermore, a CaMKII inhibitor, KN-93, did not affect the ability of peptide to increase muscle tonus. Thus, al though DPKQDFMRFamide acts through a G-protein coupled FMRFamide receptor, it does not appear to act via cAMP, cGMP, IP3, PLC or CaMKl1. The mechanism through which the FMRFamide receptor acts remains to be determined.
Resumo:
With the relationship between endothelin-1 (ET-1) stimulation and reactive oxygen species (ROS) production unknown in adventitial fibroblasts, I examined the ROS response to ET-1 and angiotensin (Ang II). ET-1 -induced ROS peaked following 4 hrs of ET-1 stimulation and was inhibited by an ETA receptor antagonist (BQ 123, 1 uM) an extracellular signal-regulated kinase (ERK) 1/2 inhibitor (PD98059, 10 uM), and by both a specific, apocynin (10 uM), and non-specific, diphenyleneiodonium (10 uM), NAD(P)H oxidase inhibitor. NOX2 knockout fibroblasts did not produce an ET-1 induced change in ROS levels. Ang II treatment increased ROS levels in a biphasic manner, with the second peak occurring 6 hrs following stimulation. The secondary phase of Ang II induced ROS was inhibited by an ATi receptor antagonist, Losartan (100 uM) and BQ 123. In conclusion, ET-1 induces ROS production primarily through an ETA-ERKl/2 NOX2 pathway, additionally, Ang II-induced ROS production also involves an ETa pathway.
Resumo:
Please consult the paper edition of this thesis to read. It is available on the 5th Floor of the Library at Call Number: Z 9999 B56 M68 2007
Resumo:
Resveratrol, a polyphenol found naturally in red wines, has attracted great interest in both the scientific community and the general public for its reported ability to protect against many of the diseases facing Western society today. While the purported health effects of resveratrol are well characterized, details of the cellular mechanisms that give rise to these observations are unclear. Here, the mitochondrial antioxidant enzyme Mn superoxide dismutase (MnSOD) was identified as a proximal target of resveratrol in vitro and in vivo. MnSOD protein and activity levels increase significantly in cultured cells treated with resveratrol, and in the brain tissue of mice given resveratrol in a high fat diet. Preventing the increase in MnSOD levels eliminates two of resveratrol’s more interesting effects in the context of human health: inhibition of proliferative cell growth and cytoprotection. Thus, the induction of MnSOD is a critical step in the molecular mechanism of resveratrol. Mitochondrial morphology is a malleable property that is capable of impeding cell cycle progression and conferring resistance against stress induced cell death. Using confocal microscopy and a novel ‘cell free’ fusion assay it was determined that concurrent with changes in MnSOD protein levels, resveratrol treatment leads to a more fused mitochondrial reticulum. This observation may be important to resveratrol’s ability to slow proliferative cell growth and confer cytoprotection. Resveratrol's biological activities, including the ability to increase MnSOD levels, are strikingly similar to what is observed with estrogen treatment. Resveratrol fails to increase MnSOD levels, slow proliferative cell growth and confer cytoprotection in the presence of an estrogen receptor antagonist. Resveratrol's effects can be replicated with the specific estrogen receptor beta agonist diarylpropionitrile, and are absent in myoblasts lacking estrogen receptor beta. Four compounds that are structurally similar to resveratrol and seven phytoestrogens predicted to bind to estrogen receptor beta were screened for their effects on MnSOD, proliferative growth rates and stress resistance in cultured mammalian cells. Several of these compounds were able to mimic the effects of resveratrol on MnSOD levels, proliferative cell growth and stress resistance in vitro. Thus, I hypothesize that resveratrol interacts with estrogen receptor beta to induce the upregulation of MnSOD, which in turn affects cell cycle progression and stress resistance. These results have important implications for the understanding of RES’s biological activities and potential applications to human health.
Resumo:
The capacity for all living cells to sense and interact with their environment is a necessity for life. In highly evolved, eukaryotic species, like humans, signalling mechanisms are necessary to regulate the function and survival of all cells in the organism. Synchronizing systemic signalling systems at the cellular, organ and whole-organism level is a formidable task, and for most species requires a large number of signalling molecules and their receptors. One of the major types of signalling molecules used throughout the animal kingdom are modulatory substances (e.x. hormones and peptides). Modulators can act as chemical transmitters, facilitating communication at chemical synapses. There are hundreds of circulating modulators within the mammalian system, but the reason for so many remains a mystery. Recent work with the fruit fly, Drosophila melanogaster demonstrated the capacity for peptides to modulate synaptic transmission in a neuron-specific manner, suggesting that peptides are not simply redundant, but rather may have highly specific roles. Thus, the diversity of peptides may reflect cell-specific functions. The main objective of my doctoral thesis was to examine the extent to which neuromodulator substances and their receptors modulate synaptic transmission at a cell-specific level using D. melanogaster. Using three different modulatory substances, i) octopamine - a biogenic amine released from motor neuron terminals, ii) DPKQDFMRFa - a neuropeptide secreted into circulation, and iii) Proctolin - a pentapeptide released both from motor neuron terminals and into circulation, I was able to investigate not only the capacity of these various substances to work in a cell-selective manner, but also examine the different mechanisms of action and how modulatory substances work in concert to execute systemic functionality . The results support the idea that modulatory substances act in a circuit-selective manner in the central nervous system and in the periphery in order to coordinate and synchronize physiologically and behaviourally relevant outputs. The findings contribute as to why the nervous system encodes so many modulatory substances.