4 resultados para Mechanical Energy Absorption.
em Brock University, Canada
Resumo:
Photosynthesis is a process in which electromagnetic radiation is converted into chemical energy. Photosystems capture photons with chromophores and transfer their energy to reaction centers using chromophores as a medium. In the reaction center, the excitation energy is used to perform chemical reactions. Knowledge of chromophore site energies is crucial to the understanding of excitation energy transfer pathways in photosystems and the ability to compute the site energies in a fast and accurate manner is mandatory for investigating how protein dynamics ef-fect the site energies and ultimately energy pathways with time. In this work we developed two software frameworks designed to optimize the calculations of chro-mophore site energies within a protein environment. The first is for performing quantum mechanical energy optimizations on molecules and the second is for com-puting site energies of chromophores in a fast and accurate manner using the polar-izability embedding method. The two frameworks allow for the fast and accurate calculation of chromophore site energies within proteins, ultimately allowing for the effect of protein dynamics on energy pathways to be studied. We use these frame-works to compute the site energies of the eight chromophores in the reaction center of photosystem II (PSII) using a 1.9 Å resolution x-ray structure of photosystem II. We compare our results to conflicting experimental data obtained from both isolat-ed intact PSII core preparations and the minimal reaction center preparation of PSII, and find our work more supportive of the former.
Resumo:
Cyanobacteria are able to regulate the distribution of absorbed light energy between photo systems 1 and 2 in response to light conditions. The mechanism of this regulation (the state transition) was investigated in the marine cyanobacterium Synechococcus sp. strain PCC 7002. Three cell types were used: the wild type, psaL mutant (deletion of a photo system 1 subunit thought to be involved in photo system 1 trimerization) and the apcD mutant (a deletion of a phycobilisome subunit thought to be responsible for energy transfer to photo system 1). Evidence from 77K fluorescence emission spectroscopy, room temperature fluorescence and absorption cross-section measurements were used to determine a model of energy distribution from the phycobilisome and chlorophyll antennas in state 1 and state 2. The data confirm that in state 1 the phycobilisome is primarily attached to PS2. In state 2, a portion of the phycobilisome absorbed light energy is redistributed to photo system 1. This energy is directly transferred to photo system 1 by one of the phycobilisome terminal emitters, the product of the apcD gene, rather than via the photo system 2 chlorophyll antenna by spillover (energy transfer between the photo system 2 and photo system 1 chlorophyll antenna). The data also show that energy absorbed by the photo system 2 chlorophyll antenna is redistributed to photo system 1 in state 2. This could occur in one of two ways; by spillover or in a way analogous to higher plants where a segment of the chlorophyll antenna is dissociated from photo system 2 and becomes part of the photo system 1 antenna. The presence of energy transfer between neighbouring photo system 2 antennae was determined at both the phycobilisome and chlorophyll level, in states 1 and 2. Increases in antenna absorption cross-section with increasing reaction center closure showed that there is energy transfer (connectivity) between photosystem 2 antennas. No significant difference was shown in the amount of connectivity under these four conditions.
Resumo:
The near ultraviolet absorption of phosgene has been assigned to a * 1 1 ~.--n, A;-- Al electronic transition from vapour phase spectra recorded under conditions of high resolution and low_t~mperature. Progressions in Vi, v2' V3' V4 and V4 ha\1e been identified in the spectrum and have been analyzed in terms of vibronic transitions between a planar ground and a nonplanar excited state. A ba~rier height of 3170 cm~l:and a nona planar equilibrium angle of 32.5 were calculated for the upper state from a fit of the energy levels of a Lorentzian-guadratic potential func- ~ion to the observed levels of V 4 . ' ~he false ori- 3in, 41 0 , of the spectrum has been assigned to the band at 33,631 cm -1 . An oscillator strength of -3 1 . 1 f = 1. a x 10 has been obtained for the A - A 2 1 transition.
Resumo:
The optical cross section of PS I in whole cells of Porphyridium cruentum (UTEX 161), held in either state 1 or state 2, was determined by measuring the change in absorbance at 820nm, an indication of P700+; the X-section of PS2 was determined by measuring the variable fluorescence, (Fv-Fo)/Fo, from PS2. Both cross-sections were 7 determined by fitting Poisson distribution equations to the light saturation curves obtained with single turnover laser flashes which varied in intensity from zero to a level where maximum yield occurred. Flash wavelengths of 574nm, 626nm, and 668nm were used, energy absorbed by PBS, by PBS and chla, and by chla respectively. There were two populations of both PSi and PS2. A fraction of PSi is associated with PBS, and a fraction of PS2 is free from PBS. On the transition S1->S2, only with PBS-absorbed energy (574nm) did the average X-section of PSi increase (27%), and that of PS2 decrease (40%). The fraction of PSi associated with PBS decreased, from 0.65 to 0.35, and the Xsection of this associated PS 1 increased, from 135±65 A2 to 400±300A2. The cross section of PS2 associated with PBS decreased from 150±50 A2 to 85±45 A2, but the fraction of PS2 associated with PBS, approximately 0.75, did not change significantly. The increase in PSi cross section could not be completely accounted for by postulating that several PSi are associated with a single PBS and that in the transition to state2, fewer PSi share the same number of PBS, resulting in a larger X-section. It is postulated that small changes occur in the attachment of PS2 to PBS causing energy to be diverted to the attached PSi. These experiments support neither the mobile-PBS model of state transitions nor that of spillover. From cross section changes there was no evidence of energy transfer from PS2 to PSi with 668nm light. The decrease in PS2 fluorescence which occurred at this wavelength cannot be explained by energy transfer; another explanation must be sought. No explanation was found for an observed decrease in PSi yield at high flash intensities.