3 resultados para Measurement system

em Brock University, Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fermi patches in quasi-two dimensional charge density waves (CDW) have not described the connection to superconductivity (SC) according to theory adequately at this point in time. The connection between CDW and SC in the quasi-two dimensional material CuxTiSe2 is an interesting one which might reveal mechanisms in unconventional superconductors. A previous Brock graduate student grew crystals of CuxTiSe2. The precise doping of the samples was not known. In order to determine the doping parameter x in CuxTiSe2, a sensitive resistivity measurement system was necessary. A new resistivity measurement system was designed and implemented utilizing an Infrared Labs HDL-10 He3 cryostat. By comparing with data from the literature, doping of two samples was investigated using the new measurement system and a Quantum Design Magnetic Property Measurement System (MPMS). Methods for determining the doping revealed that the old resistivity system would not be able to determine the CDW transition temperature of highly doped samples or doping for elongated samples due to electronic noise. Doping in one sample was found to be between x=0.06 and x=0.065. Values of doping in the second sample had a discrepancy but could be explained by incorrect sample orientation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phospholipids in water form lamellar phases made up of alternating layers of water and bimolecular lipid leaflets. Three complementary methods, osmotic, mechanical, and vapour pressures, were used to measure the work of removing water from lamellar phases composed of frozen dipalmitoylphosphatidylcholine ( DPPC ), melted DPPC, egg phosphatidylethanolamine or equimolar mixtures of DPPC and cholesterol ( DPPC/CHOL ), Concurrently the structural changes that resulted from this water removal were measured using X-ray diffraction. The work was divided into that which forces the bilayers together ( F ) and that which compresses the molecules together within the bilayers ( F )# A large repulsive force exists between bilayers composed of each of the lipids studied and this force increases exponentially as bilayer separation is decreased. F is affected by the nature of the head groups, conformation of the acyl chains and heterogeneity of these chains. In general all of the melted phosphatidylcholines ( melted DPPC, egg lecithin and DPPC/CHOL ) have large equilibrium separations in excess water resulting from large repulsive hydration forces between these bilayers. By comparison, egg PE has an increased attractive force, and frozen DPPC has a decreased hydration force; each results in smaller separations in water for these two lipids. The chemical potentials of the water between the bilayers for all these lipids lie on a continuum, indicating that interbilayer water cannot be characterized by two discrete states, usually referred to as "bound" or "non**bound". For all lipids studied a maximum of 25 % of the total work done on the system goes into deforming the bilayers. The method used here viii to separate repulsion from deformation, developed for us by v. A. Parsegian, provides a unique method for the measurement of lateral pressure of a bilayer and its modulus of deformability ( Y ). Lateral pressure is affected by the nature of the head group, conformation and heterogeneity of the acyl chains. For small changes in molecular surface area ( A ) near equilibrium, both melted and frozen DPPC have similar values for the deformability modulus. Thus in this regime it requires about the same force to change the angle of tilt of frozen chains as it does to compress the fluid bilayer. The introduction of cholesterol into bilayers of DPPC reduces dramatically the lateral pressure of the bilayers over a large range of molecular surface areas ( A ). The variation in the magnitude of bilayer repulsion with different phospholipids provides a basis for the mechanism of lipid segregation in mixed lipid systems and suggests that interacting heterogeneous membranes may influence or modulate the composition of the opposing membrane. The measurements of deformabilities of bilayers provides a direct comparison of them with the properties of monolayers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

. The influence of vine water status was studied in commercial vineyard blocks of Vilis vinifera L. cv. Cabernet Franc in Niagara Peninsula, Ontario from 2005 to 2007. Vine performance, fruit composition and vine size of non-irrigated grapevines were compared within ten vineyard blocks containing different soil and vine water status. Results showed that within each vineyard block water status zones could be identified on GIS-generated maps using leaf water potential and soil moisture measurements. Some yield and fruit composition variables correlated with the intensity of vine water status. Chemical and descriptive sensory analysis was performed on nine (2005) and eight (2006) pairs of experimental wines to illustrate differences between wines made from high and low water status winegrapes at each vineyard block. Twelve trained judges evaluated six aroma and flavor (red fruit, black cherry, black current, black pepper, bell pepper, and green bean), thr~e mouthfeel (astringency, bitterness and acidity) sensory attributes as well as color intensity. Each pair of high and low water status wine was compared using t-test. In 2005, low water status (L WS) wines from Buis, Harbour Estate, Henry of Pelham (HOP), and Vieni had higher color intensity; those form Chateau des Charmes (CDC) had high black cherry flavor; those at RiefEstates were high in red fruit flavor and at those from George site was high in red fruit aroma. In 2006, low water status (L WS) wines from George, Cave Spring and Morrison sites were high in color intensity. L WS wines from CDC, George and Morrison were more intense in black cherry aroma; LWS wines from Hernder site were high in red fruit aroma and flavor. No significant differences were found from one year to the next between the wines produced from the same vineyard, indicating that the attributes of these wines were maintained almost constant despite markedly different conditions in 2005 and 2006 vintages. Partial ii Least Square (PLS) analysis showed that leaf \}' was associated with red fruit aroma and flavor, berry and wine color intensity, total phenols, Brix and anthocyanins while soil moisture was explained with acidity, green bean aroma and flavor as well as bell pepper aroma and flavor. In another study chemical and descriptive sensory analysis was conducted on nine (2005) and eight (2006) medium water status (MWS) experimental wines to illustrate differences that might support the sub-appellation system in Niagara. The judges evaluated the same aroma, flavor, and mouthfeel sensory attributes as well as color intensity. Data were analyzed using analysis of variance (ANOVA), principal component analysis (PCA) and discriminate analysis (DA). ANOV A of sensory data showed regional differences for all sensory attributes. In 2005, wines from CDC, HOP, and Hemder sites showed highest. r ed fruit aroma and flavor. Lakeshore and Niagara River sites (Harbour, Reif, George, and Buis) wines showed higher bell pepper and green bean aroma and flavor due to proximity to the large bodies of water and less heat unit accumulation. In 2006, all sensory attributes except black pepper aroma were different. PCA revealed that wines from HOP and CDC sites were higher in red fruit, black currant and black cherry aroma and flavor as well as black pepper flavor, while wines from Hemder, Morrison and George sites were high in green bean aroma and flavor. ANOV A of chemical data in 2005 indicated that hue, color intensity, and titratable acidity (TA) were different across the sites, while in 2006, hue, color intensity and ethanol were different across the sites. These data indicate that there is the likelihood of substantial chemical and sensory differences between clusters of sub-appellations within the Niagara Peninsula iii