2 resultados para Measurement model
em Brock University, Canada
Resumo:
This thesis tested a path model of the relationships of reasons for drinking and reasons for limiting drinking with consumption of alcohol and drinking problems. It was hypothesized that reasons for drinking would be composed of positively and negatively reinforcing reasons, and that reasons for limiting drinking would be composed of personal and social reasons. Problem drinking was operationalized as consisting of two factors, consumption and drinking problems, with a positive relationship between the two. It was predicted that positively and negatively reinforcing reasons for drinking would be associated with heavier consumption and, in turn, more drinking problems, through level of consumption. Negatively reinforcing reasons were also predicted to be associated with drinking problems directly, independent of level of consumption. It was hypothesized that reasons for limiting drinking would be associated with lower levels of consumption and would be related to fewer drinking problems, through level of consumption. Finally, among women, reasons for limiting drinking were expected to be associated with drinking problems directly, independent of level of consumption. The sample, was taken from the second phase of the Niagara Young Aduh Health Study, a community sample of young adult men and women. Measurement models of reasons for drinking, reasons for limiting drinking, and problem drinking were tested using Confirmatory Factor Analysis. After adequate fit of each measurement model was obtained, the complete structural model, with all hypothesized paths, was tested for goodness of fit. Cross-group equality constraints were imposed on all models to test for gender differences. The results provided evidence supporting the hypothesized structure of reasons for drinking and problem drinking. A single factor model of reasons for limiting drinking was used in the analyses because a two-factor model was inadequate. Support was obtained for the structural model. For example, the resuhs revealed independent influences of Positively Reinforcing Reasons for Drinking, Negatively Reinforcing Reasons for Drinking, and Reasons for Limiting Drinking on consumption. In addition. Negatively Reinforcing Reasons helped to account for Drinking Problems independent of the amount of alcohol consumed. Although an additional path from Reasons for Limiting Drinking to Drinking Problems was hypothesized for women, it was of marginal significance and did not improve the model's fit. As a result, no sex differences in the model were found. This may be a result of the convergence of drinking patterns for men and women. Furthermore, it is suggested that gender differences may only be found in clinical samples of problem drinkers, where the relative level of consumption for women and men is similar.
Resumo:
The optical cross section of PS I in whole cells of Porphyridium cruentum (UTEX 161), held in either state 1 or state 2, was determined by measuring the change in absorbance at 820nm, an indication of P700+; the X-section of PS2 was determined by measuring the variable fluorescence, (Fv-Fo)/Fo, from PS2. Both cross-sections were 7 determined by fitting Poisson distribution equations to the light saturation curves obtained with single turnover laser flashes which varied in intensity from zero to a level where maximum yield occurred. Flash wavelengths of 574nm, 626nm, and 668nm were used, energy absorbed by PBS, by PBS and chla, and by chla respectively. There were two populations of both PSi and PS2. A fraction of PSi is associated with PBS, and a fraction of PS2 is free from PBS. On the transition S1->S2, only with PBS-absorbed energy (574nm) did the average X-section of PSi increase (27%), and that of PS2 decrease (40%). The fraction of PSi associated with PBS decreased, from 0.65 to 0.35, and the Xsection of this associated PS 1 increased, from 135±65 A2 to 400±300A2. The cross section of PS2 associated with PBS decreased from 150±50 A2 to 85±45 A2, but the fraction of PS2 associated with PBS, approximately 0.75, did not change significantly. The increase in PSi cross section could not be completely accounted for by postulating that several PSi are associated with a single PBS and that in the transition to state2, fewer PSi share the same number of PBS, resulting in a larger X-section. It is postulated that small changes occur in the attachment of PS2 to PBS causing energy to be diverted to the attached PSi. These experiments support neither the mobile-PBS model of state transitions nor that of spillover. From cross section changes there was no evidence of energy transfer from PS2 to PSi with 668nm light. The decrease in PS2 fluorescence which occurred at this wavelength cannot be explained by energy transfer; another explanation must be sought. No explanation was found for an observed decrease in PSi yield at high flash intensities.