4 resultados para Mammary glands.
em Brock University, Canada
Resumo:
This study examined relationships among physical activity, body fat and salivary immonoglobulin A (sIgA) levels in adolescent children of Southern Ontario. Gender differences on these factors were also assessed. Sixty-one grade-five students (10-1 lyrs), males (n=29) and females (n=31), who had not received a flu vaccination in the past 12 months, participated in the study. They were assessed for: aerobic power (20-m shuttle run), relative body fat (bioelectrical impedance analysis), sIgA, sIgA/albumin ratio, and salivary Cortisol. Each subject completed the Habitual Activity Estimation Scale and the Participation Questioimaire. Students wore a pedometer for 48h to estimate their average total distance traveled per day. The results show 40% of the children were over 25% body fat and 50% of them spend less than five hours per day in any physical activities. Salivary IgA was not related to salivary Cortisol, physical activity, fitness level or body fat in this age group. There were no gender differences in sIgA and Cortisol levels. Boys had a significantly higher aerobic power and daily distance traveled, but reported similar organized and fi-ee time activity participation levels as the girls. The test-retest reproducibility for salivary Cortisol was 0.663 (p<0.01), while long term sIgA and sIgA/albumin ratio reproducibility was non-significant for repeated measurements taken after six weeks. It was found that salivary IgA has not been shovm to be a stable measure in children, in contrast to the results found in the literatiu-e that tested adults and the relationship with physical activity, fitness level and body fat.
Resumo:
Many studies investigating the relationship between hormones and competition have focused on athletic competition. The athletic setting enables r researchers to investigate the hormone-behaviour relationship in a relatively controlled environment. However, research to date has been based on observations made from single status contests and/or weekend tournaments and as such, does not provide a clear picture of an individual's average hormonal responses to both victory and defeat. In appreciation of this limitation, the current study tracked elite hockey players throughout a hockey season, measuring pre- and post-game salivary testosterone and Cortisol as well as psychological measures. I was interested in determining whether status outcome (win vs. loss) would influence an individual's testosterone and Cortisol responses to competition. Furthermore, I was also interested in assessing whether testosterone and Cortisol responses were specific to the competitive environment or whether similar hormonal responses would occur during non-competitive practice sessions. Last, I was interested in whether there were any differences in pre-game hormonal and psychological states depending on where the status contest was held: home versus away. The results indicated that game outcome moderated the testosterone responses to competition. That is, testosterone increased significantly more after a victory compared to a defeat. Furthermore, a loss of status produced significantly hreports, the players did not show an anticipatory rise in either Cortisol or testosterone prior to competition. In addition to the effects of status outcome on hormonal levels, it was also found that these hormonal responses were specific to competition. The athletes in the current study did not demonstrate any hormonal responses to the practice sessions. Last, there were significant differences in pre-game testosterone as well as in selfconfidence, cognitive, and somatic anxiety levels depending on the location at which the status contest took place. Pre-game testosterone and self-confidence levels were significantly higher prior to games played in the home venue. In contrast, pre-game somatic and cognitive anxiety levels were significantly higher prior to games played in the away venue. The current findings add to the developing literature on the relationship between hormones and competition. This was the first study to detect a moderating effect of status outcome on testosterone responses in a team sport. Furthermore, this was also the first study in humans to demonstrate that post-contest Cortisol levels were significantly higher after a loss of status. Last, the current study also adds to the sport psychology literature by demonstrating that pre-game psychological variables differ depending on where the status contest is being held: higher self-confidence at home and higher somatic and cognitive anxiety away. Taken together, the results from the current thesis may have important practical relevance to coaches, trainers and sport psychologists who are always trying to find ways to maximize performance. post-game Cortisol levels than did an increase in status. In contrast to previous
Resumo:
The relationship between photoperiod, plasma concentration of ionic calcium and the histology of the prolactin-secreting cells of the rostral pars distalis of the pituitary gland, the Corpuscles of Stannius and the Ultimobranchial gland were investigated. Neither the plasma concentration of ionic calcium nor histologically apparent prolactin cell activity could be correlated with photoperiod. Some evidence of a photoperiodic effect on both the Corpuscles of Stannius and the Ultimobranchial gland was obtained. The expected reciprocal relationship between the activity of these glands was not obvious at the histological level . Quantitative and qualitative analysis at the light microscope level revealed, however, that the hormone prolactin-secreting eta cells of the rostral pars distalis and the hypocalcin-secreting cells of the Corpuscles of Stannius may be arranged in a lamellar pattern comprized of synchronous bands of cells in like-phase of a secretory cycle consisting of four stages - synthesis, storage, release and reorganization. Such synchronized cell cycles in these glands have not heretofore been described in literature. It is suggested that the maintenance of at least 255? of the cells in any one phase of the cycle ensures a supply of the required hormone at all times.
Resumo:
Black fly (Simuliidae) silk is produced by the larvae and pharate pupae and is used for anchorage and cocoon production. There exists limited information on simuliid silks, including protein composition and genetic sequences encoding such proteins. The present study aimed to expand what is known about simuliid silks by examining the silks of several simuliid species and by making comparisons to the silk of non-biting midges (Chironomidae). Silk glands were dissected out of larval and pupal simuliids, and protein contents were separated by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and visualized with silver stain. Protein contents were compared by mass in kilodaltons (kDa) between life stages and among species. Polymerase chain reaction (PCR) was used to expand upon known gene sequence information, and to determine the presence of genes homologous to chironomid silk. SDS-PAGE of cocoons revealed the presence of a 56 kDa and a 67 kDa protein. Silk gland contained as many as 28 different proteins ranging from 319 kDa to 8 kDa. Protein profiles vary among species, and group into large (>200), intermediate(>100), and small (<100) protein classes as is found in chironomids. It is likely that silk evolved in a common ancestor of simuliids and chironomids