10 resultados para Mammalian cell lines

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The construction of adenovirus vectors for cloning and foreign gene expression requires packaging cell lines that can complement missing viral functions caused by sequence deletions and/or replacement with foreign DNA sequences. In this study, packaging cell lines were designed to provide in trans the missing bovine adenovirus functions, so that recombinant viruses could be generated. Fetal bovine kidney and lUng cells, acquired at the trimester term from a pregnant cow, were tranfected with both digested wild type BAV2 genomic DNA and pCMV-EI. The plasmid pCMV-EI was specifically constructed to express El of BAV2 under the control of the cytomegalovirus enhancer/promoter (CMV). Selection for "true" transformants by continuous passaging showed no success in isolating immortalised cells, since the cells underwent crisis resulting in complete cell death. Moreover, selection for G418 resistance, using the same cells, also did not result in the isolation of an immortalised cell line and the same culture-collapse event was observed. The lack of success in establishing an immortalised cell line from fetal tissue prompted us to transfect a pre-established cell line. We began by transfecting MDBK (Mardin-Dardy bovine kidney) cells with pCMV-El-neo, which contain the bacterial selectable marker neo gene. A series of MDBK-derived cell lines, that constitutively express bovine adenoviral (BAV) early region 1 (El), were then isolated. Cells selected for resistance to the drug G418 were isolated collectively for full characterisation to assess their suitability as packaging cell lines. Individual colonies were isolated by limiting dilution and further tested for El expression and efficiency of DNA uptake. Two cell lines, L-23 and L-24, out of 48 generated foci tested positive for £1 expression using Northern Blot analysis. DNA uptake studies, using both lipofectamine and calcium phosphate methods, were performed to compare these cells, their parental MDBK cells, 8 and the unrelated human 293 cells as a benchmark. The results revealed that the new MDBKderived clones were no more efficient than MDBK cells in the transient expression of transfected DNA and that they were inferior to 293 cells, when using lacZ as the reporter gene. In view of the inherently poor transfection efficiency of MDBK cells and their derivatives, a number of other bovine cells were investigated for their potential as packaging cells. The cell line CCL40 was chosen for its high efficiency in DNA uptake and subsequently transfected with the plasmid vector pCMV El-neo. By selection with the drug G418, two cell lines were isolated, ProCell 1 and ProCell 2. These cell lines were tested for El expression, permissivity to BAV2 and DNA uptake efficiency, revealing a DNA uptake efficiency of 37 % , comparable to that of CCL40. Attempts to rescue BAV2 mutants carrying the lacZ gene in place of £1 or £3 were carried out by co-transfecting wild type viral DNA with either the plasmid pdlElE-Z (which contains BAV2 sequences from 0% to 40.4% with the lacZ gene in place of the £1 region from 1.1% to 8.25%) or with the plasmid pdlE3-5-Z (which contains BAV2 sequences from 64.8% to 100% with the lacZ gene in place of the E3 region from 75.8% to 81.4%). These cotransfections did not result in the generation of a viral mutant. The lack of mutant generation was thought to be caused by the relative inefficiency ofDNA uptake. Consequently, cosBAV2, a cosmid vector carrying the BAV2 genome, was modified to carry the neo reporter gene in place of the £3 region from 75.8% to 81.4%. The use of a single cosmid vector earring the whole genome would eliminate the need for homologous recombination in order to generate a viral vector. Unfortunately, the transfection of cosBAV2- neo also did not result in the generation of a viral mutant. This may have been caused by the size of the £3 deletion, where excess sequences that are essential to the virus' survival might have been deleted. As an extension to this study, the spontaneous E3 deletion, accidently discovered in our viral stock, could be used as site of foreign gene insertion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human adenoviruses (Ads), members of the family adenoviridae, are medium-sized DNA viruses which have been used as valuable research tools for the study of RNA processing, oncogenic transformation, and for the development of viral vectors for use in gene delivery and immunization technology. The left 12% of the linear Ad genollle codes for products which are necessary for the efficient replication of the virus, as well as being responsible for the forlllation of tumors in animallllodels. The establishlllent of the 293 cell line, by immortalization of human embryonic kidney cells with th~ E1 region of Ad type S (AdS), has facilitated extensive manipulation of the Ads and the development of recombinant Ad vectors. The study of bovine adenoviruses (BAVs), which cause mild respiratory and gastrointestinal infections in cattle has, on the other hand, been limited primarily to that of infectivity, immunology and clinicallllanifestations. As a result, any potential as gene delivery vehicles has not yet been realized. Continued research into the molecular biolo~gy of BAVs and the development of recolllbinant vectors would benefit from the development of a cell line analogous to that of the 293 cells. In an attelllpt to establish such a cell line, the recombinant plaslllid pKC-neo was constructed, containing the left 0-19.7% of the BAV type 3 (BAV3) genome, and the selectable marker for resistance to the aminoglycoside G418, a neomycin derivative. The plasmid construct was then used to transfect both the Madin-Darby bovine kidney (MDBK) -iicell line and primary bovine lung cells, after which G418-resistant foci were selected for analysis. Two cell lines, E61 (MDBK) and E24 (primary lung), were subsequently selected and analysed for DNA content, revealing the presence of the pKC-neo sequences in their respective genomes. In addition, BAV3 RNA transcripts were detected in the E61 cells. Although the presence of E1 products has yet to be confirmed in both cell lines, the E24 cells exhibit a phenotype characteristic of partial transformation by E1. The apparent immortalization of the primary lung cells will permit exploitation of their ability to take up exogenous DNA at high efficiency.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most human genes undergo alternative splicing and loss of splicing fidelity is associated with disease. Epigenetic silencing of hMLH 1 via promoter cytosine methylation is causally linked to a subset of sporadic non-polyposis colon cancer and is reversible by 5-aza-2' -deoxycytidine treatment. Here I investigated changes in hMLHI mRNA splicing profiles in normal fibroblasts and colon cancer-derived human cell lines. I established the types and frequencies of hMLHI mRNA transcripts generated under baseline conditions, after hydrogen peroxide induced oxidative stress, and in acutely 5-aza-2' -deoxycytidine-treated and stably derepressed cancer cell lines. I found that hMLHI is extensively spliced under all conditions including baseline (50% splice variants), the splice variant distribution changes in response to oxidative stress, and certain splice variants are sensitive to 5- aza-2' -deoxycytidine treatment: Splice variant diversity and frequency of exon 17 skipping correlates with the level of hMLHI promoter methylation suggesting a link between promoter methylation and mRNA splicing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene therapy is predicated upon efficient gene transfer. While viral vectors are the method of choice for transformation efficiency, the immunogenicity and safety concerns remain problematic. Non-viral vectors, on the other hand, have shown high degrees of safety and are mostly non-immunogenic in nature. However, non-viral vectors usually suffer from low levels oftransformation efficiency and transgene expression. Thus, increasing transformation efficiency ofnon-viral vectors, in particular by calcium phosphate co-precipitation technique, is a way of generating a suitable vector for gene therapy and is the aim of this study. It is a long known fact that different cell lines have different transfection efficiencies regardless oftransfection methodology (Lin et a!., 1994). Using commonly available cell lines Madine-Darby Bovine Kidney (MDBK), HeLa and Human Embryonic Kidney (HEK-293), we have shown a decreasing trend ofDNase activity based on a plasmid digestion assay. From densitometry studies, as much as a 40% reduction in DNase activity was observed when comparing HEK-293 (least active) to MDBK (most active). Using various biochemical assays, it was determined that DNase y, in particular, was expressed more highly in MDBK cells than both HeLa and HEK-293. Upon cloning of the bovine DNase y gene, we utilized the sequence information to construct antisense expressing plasmids via both traditional antisense RNA (pASDGneoM) and siRNA (psiRNA-S4, psiRNA-S11 and psiRNA-S16). For the construction ofpASDGneoM, the 3' end of the DNase y was inserted in opposite orientation under a cytomegalovirus (CMV) promoter such that the expression ofRNA complementary to the DNase 2 ymRNA occurred. For siRNA plasmids, the sequence was screened to yield optimal short sequences for siRNA inhibition. The silencing ofbovine DNase y led to an increase in transfection efficiency based on traditional calcium phosphate co-precipitation technique; stable clones of siRNA-producing MDBK cell lines (psiRNA-S4 Bland psiRNA-S4 B4) both demol).strated 4-fold increases in transfection efficiency. Furthermore, serial transfection of antisense DNase y plasmid pASDGneoM and reporter pCMV-~ showed a maximum of 8-fold increase in transfection efficiency when the two separate transfections were carried out 4 hours apart (i.e. transfection ofpASDGneoM, separated by four hours, then transfection ofpCMV-~). Together, these results demonstrate the involvement ofDNase y in reducing transfection efficiency, at least by traditional calcium phosphate technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--Brock University, 2010.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adenoviruses are the most commonly used in the development of oncolytic therapy. Oncolytic adenoviruses are genetically modified to selectivity replicate in and kill tumor cells. The p53 molecule is a tumor suppressor protein that responds to viral infection through the activation of apoptosis, which is inhibited by adenovirus E1B55kDa protein leading to progressive viral lytic cycle. The non-specificity of replication has limited the use of wild type adenovirus in cancer therapy. This issue was resolved by using an E1b deleted Ad that can only replicate in cells with a deficiency in the p53 protein, a common feature of most cancer cells. Although demonstrating a moderate success rate, E1b55kDa deleted Ad has not been approved as a standard therapy for all cancer types. Several studies have revealed that E1b deleted Ad replication was independent of p53 status in the cell, as the virus replicated better in some p53 deficient cancers more than others. However, this mechanism has not been investigated deeply. Therefore, the objective of this study is to understand the relationship between p53 status, levels and functional activity, and oncolytic Ad5dlE1b55kDa replication efficiency. Firstly, five transient p53 expression vectors that contain different regulatory elements were engineered and then evaluated in H1299, HEK293 and HeLa cell lines. Data indicated that vector that contains the MARs and HPRE regulatory elements achieved the highest stability of p53 expression. Secondly, we used these vectors to examine the effect of various p53 expression levels on the replication efficiency of oncolytic Ad5dlE1b55kDa. We found that the level of p53 in the cell had an insignificant effect on the oncolytic viruses’ replication. However, the functional activity of p53 had a significant effect on its replication, as Ad5dlE1b55kDa was shown to have selective activity in H1299 cells (p53-null). In contrast, a decrease in viral replication was found in HeLa cells (p53-positive). Finally, the effect of p53’s functional activity on the replication efficiency of oncolytic Ad5dlE1b55kDa was examined. Viral growth was evaluated in H1299 cells expressing number of p53 mutants. P53-R175H mutant successfully rescued viral growth by allowing the virus to exert its mechanism of selectivity. The mechanism entailed deregulating the expression of specific genes, cell cycle and apoptosis, in the p53 pathway to promote its production leading to efficient oncolytic effect. These results confirmed that oncolytic Ad5dlE1b55kDa sensitivity is mutation-type specific. Therefore, before it is applied clinically as cancer therapy for p53 deficient tumors, the type of p53 mutation must be determined for efficient antitumor effect.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The allometric scaling relationship observed between metabolic rate (MR) and species body mass can be partially explained by differences in cellular MR (Porter & Brand, 1995). Here, I studied cultured cell lines derived from ten mammalian species to determine whether cells propagated in an identical environment exhibited MR scaling. Oxidative and anaerobic metabolic parameters did not scale significantly with donor body mass in cultured cells, indicating the absence of an intrinsic MR setpoint. The rate of oxygen delivery has been proposed to limit cellular metabolic rates in larger organisms (West et al., 2002). As such cells were cultured under a variety of physiologically relevant oxygen tensions to investigate the effect of oxygen on cellular metabolic rates. Exposure to higher medium oxygen tensions resulted in increased metabolic rates in all cells. Higher MRs have the potential to produce more reactive oxygen species (ROS) which could cause genomic instability and thus reduced lifespan. Longer-lived species are more resistant to oxidative stress (Kapahi et al, 1999), which may be due to greater antioxidant and/or DNA repair capacities. This hypothesis was addressed by culturing primary dermal fibroblasts from eight mammalian species ranging in maximum lifespan from 5 to 120 years. Only the antioxidant manganese superoxide dismutases (MnSOD) positively scaled with species lifespan (p<0.01). Oxidative damage to DNA is primarily repaired by the base excision repair (BER) pathway. BER enzyme activities showed either no correlation or as in the case of polymerase p correlated, negatively with donor species (p<0.01 ). Typically, mammalian cells are cultured in a 20% O2 (atmospheric) environment, which is several-fold higher than cells experience in vivo. Therefore, the secondary aim of this study was to determine the effect of culturing mammalian cells at a more physiological oxygen tension (3%) on BER, and antioxidant, enzyme activities. Consistently, standard culture conditions induce higher antioxidant and DNA ba.se excision repair activities than are present under a more physiological oxygen concentration. Therefore, standard culture conditions are inappropriate for studies of oxidative stress-induced activities and species differences in fibroblast DNA BER repair capacities may represent differences in ability to respond to oxidative stress. An interesting outcome firom this study was that some inherent cellular properties are maintained in culture (i.e. stress responses) while others are not (i.e. MR).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recombinant human adenovirus (Ad) vectors are being extensively explored for their use in gene therapy and recombinant vaccines. Ad vectors are attractive for many reasons, including the fact that (1) they are relatively safe, based on their use as live oral vaccines, (2) they can accept large transgene inserts, (3) they can infect dividing and postmitotic cells, and (4) they can be produced to high titers. However, there are also a number of major problems associated with Ad vectors, including transient foreign gene expression due to host cellular immune responses, problems with humoral immunity, and the creation of replication competent adenoviruses (RCA). Most Ad vectors contain deletions in the E1 region that allow for insertion of a transgene. However, the E1 gene products are required for replication and thus must be supplied in trans by a helper ceillille that will allow for the growth and packaging of the defective virus. For this purpose the 293 cell line (Graham et al., 1977) is used most often; however, homologous recombination between the vector and the cell line often results in the generation of RCA. The presence of RCA in batches of adenoviral vectors for clinical use is a safety risk because tlley . may result in the mobilization and spread of the replication-defective vector viruses, and in significant tissue damage and pathogenicity. The present research focused on the alteration of the 293 cell line such that RCA formation can be eliminated. The strategy to modify the 293 cells involved the removal of the first 380 bp of the adenovirus genome through the process of homologous recombination. The first step towards this goal involved identifying and cloning the left-end cellular-viral jUl1ction from 293 cells to assemble sequences required for homologous recombination. Polymerase chain reaction (PCR) was performed to clone the junction, and the clone was verified through sequencing. The plasn1id PAM2 was then constructed, which served as the targeting cassette used to modify the 293 cells. The cassette consisted of (1) the cellular-viral junction as the left-end region of homology, (2) the neo gene to use for positive selection upon tranfection into 293 cells, (3) the adenoviral genome from bp 380 to bp 3438 as the right-end region of homology, and (4) the HSV-tk gene to use for negative selection. The plasmid PAM2 was linearized to produce a double strand break outside the region of homology, and transfected into 293 cells using the calcium-phosphate technique. Cells were first selected for their resistance to the drug G418, and subsequently for their resistance to the drug Gancyclovir (GANC). From 17 transfections, 100 pools of G418f and GANCf cells were picked using cloning lings and expanded for screening. Genomic DNA was isolated from the pools and screened for the presence of the 380 bps using PCR. Ten of the most promising pools were diluted to single cells and expanded in order to isolate homogeneous cell lines. From these, an additional 100 G41Sf and GANef foci were screened. These preliminary screening results appear promising for the detection of the desired cell line. Future work would include further cloning and purification of the promising cell lines that have potentially undergone homologous recombination, in order to isolate a homogeneous cell line of interest.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Spontaneous teratocarcinomas are ovarian or testicular tumors which have their origins in germ cells. The tumors contain a disorganized array of benign differentiated cells as well as an undifferentiated population of malignant stem cells, the embryonal carcinoma or EC cells. These pluripotent stem cells in tissue culture share many properties with the transient pluripotent cells of the early embryo, and might therefore serve as models for the investigation of developmental events ill vitro. The property of EC cells of prime interest in this study is an in vivo phenomenon. Certain EC cell lines are known to be regulated ill vivo and to differentiate normally in association with normal embryonic cells, resulting in chimeric mice. These mice have two genetically distinct cell populations, one of which is derived from the originally malignant EC cells. This has usually been accomplished by injection of the EC cells into the Day 3 blastocyst. In this study, the interactions between earlier stage embryos and EC cells have been tested by aggregating clumps of EC cells with Day 2 embryos. The few previous aggregation studies produced a high degree of abnormality in chimeric embryos, but the EC cells employed had known chromosomal abnormalities. In this study, two diploid EC cell lines (P19 and Pi0) were aggregated with 2.5 day mouse embryos, and were found to behave quite differently in the embryonic environment. P19 containing aggregates generally resorbed early, and the few embryos recovered at midgestation were normal and non-chimeric. Pi0 containing aggregates survived in high numbers to midgestation, and the Pi0 cells were very successful in colonizing the embryo. All these embryos were chimeric, and the contribution by the EC cells to each chimera was very high. However, these heavily chimeric embryos were all abnormal. Blastocyst injection had previously produced some abnormal embryos with high Pl0 contributions in addition to the live born mice, which had lower EC contributions. This study now adds more support to the hypothesis that high EC contributions may be incompatible with normal development. The possibility that the abnormalities were due to the mixing of temporally asynchronous embryonic cell types in the aggregates was tested by aggregating normal pluripotent cells taken from 3.5 day embryos with 2.5 day embryos. Early embryo loss was very high, and histological studies showed that the majority of these embryos died by 6.5 days development. Some embryos escaped this early death such that some healthy chimeras were recovered, in contrast to recovery of abnormal chimeric embryos following Pl0-morula aggregations, and non-chimeric embryos following P19-morula aggregations. This somewhat surprising adverse effect on development following aggregation of normal cell types suggests that there are developmental difficulties associated with the mixing of asynchronous cell types in aggregates. However, the greater magnitude of the adverse effects when the aggregates contained tumor derived cells suggests that EC cells should not be considered the complete equivalent of the pluripotent cells of the early embryo.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Alternative splicing (AS) is the predominant mechanism responsible for increasing eukaryotic transcriptome and proteome complexity. In this phenomenon, numerous mRNA transcripts are produced from a single pre-mRNA sequence. AS is reported to occur in 95% of human multi-exon genes; one specific gene that undergoes AS is DNA polymerase beta (POLB). POLB is the main DNA repair gene which performs short patch base excision repair (BER). In primate untransformed primary fibroblast cell lines, it was determined that the splice variant (SV) frequency of POLB correlates positively with species lifespan. To date, AS patterns of POLB have only been examined in mammals primarily through the use of cell lines. However, little attention has been devoted to investigating if such a relationship exists in non-mammals and whether cell lines reflect what is observed in vertebrate tissues. This idea was explored through cloning and characterization of 1,214 POLB transcripts from four non-mammalian species (Gallus gallus domesticus, Larus glaucescens, Xenopus laevis, and Pogona vitticeps) and two mammalian species (Sylvilagus floridanus and Homo sapiens) in two tissue types, liver and brain. POLB SV frequency occurred at low frequencies, < 3.2%, in non-mammalian tissues relative to mammalian (>20%). The highest POLB SV frequency was found in H. sapiens liver and brain tissues, occurring at 65.4% and 91.7%, respectively. Tissue specific AS of POLB was observed in L. glaucescens, P. vitticeps, and H. sapiens, but not G. gallus domesticus, X. laevis and S. floridanus.The AS patterns of a second gene, transient receptor potential cation channel subfamily V member 1 (TRPV1), were compared to those of POLB in liver and brain tissues of G. gallus domesticus, X. laevis and H. sapiens. This comparison was performed to investigate if any changes (either increase or decrease) observed in the AS of POLB were gene specific or if they were tissue specific, in which case similar changes in AS would be seen in POLB and TRPV1. Analysis did not reveal an increase or decrease in both the AS of POLB and TRPV1 in either the liver or brain tissues of G. gallus domesticus and H. sapiens. This result suggested that the AS patterns of POLB were not influenced by tissue specific rates of AS. Interestingly, an increase in the AS of both genes was only observed in X. laevis brain tissue. This result suggests that AS in general may be increased in the X. laevis brain as compared to liver tissue. No positive correlation between POLB SV frequency and species lifespan was found in non-mammalian tissues. The AS patterns of POLB in human primary untransformed fibroblast cell lines were representative of those seen in human liver tissue but not in brain tissue. Altogether, the AS patterns of POLB from vertebrate tissues and primate cell lines revealed a positive correlation between POLB SV frequency and lifespan in mammals, but not in non-mammals. It appears that this positive correlation does not exist in vertebrate species as a whole.