4 resultados para Male urogenital system

em Brock University, Canada


Relevância:

30.00% 30.00%

Publicador:

Resumo:

reports, the players did not show an anticipatory rise in either Cortisol or testosterone prior to competition. In addition to the effects of status outcome on hormonal levels, it was also found that these hormonal responses were specific to competition. The athletes in the current study did not demonstrate any hormonal responses to the practice sessions. Last, there were significant differences in pre-game testosterone as well as in selfconfidence, cognitive, and somatic anxiety levels depending on the location at which the status contest took place. Pre-game testosterone and self-confidence levels were significantly higher prior to games played in the home venue. In contrast, pre-game somatic and cognitive anxiety levels were significantly higher prior to games played in the away venue. The current findings add to the developing literature on the relationship between hormones and competition. This was the first study to detect a moderating effect of status outcome on testosterone responses in a team sport. Furthermore, this was also the first study in humans to demonstrate that post-contest Cortisol levels were significantly higher after a loss of status. Last, the current study also adds to the sport psychology literature by demonstrating that pre-game psychological variables differ depending on where the status contest is being held: higher self-confidence at home and higher somatic and cognitive anxiety away. Taken together, the results from the current thesis may have important practical relevance to coaches, trainers and sport psychologists who are always trying to find ways to maximize performance. the cycle. The sex-specific age differences in locomotor responses to amphetamine are not due to gonadal immaturity, as females are cycling at this stage of adolescence. However, age differences may reflect the ongoing maturation of the neural substrates that that are involved in locomotor sensitizing, but not rewarding effects of amphetamine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ultrasonic vocalizations (USV) are emitted by rats in a number of social situations such as aggressive encounters, during sexual behavior, and during play in young rats, situations which are predominantly associated with strong emotional responses. These USV typically involve two distinct types of calls: 22 kHz calls, which are emitted in aversive situations and 50 kHz calls, which are emitted in non-aversive, appetitive situation. The 50 kHz calls are the focus of the present study and to date both the glutamatergic and the dopaminergic systems have been independently implicated in the production of these 50 kHz calls. The present study was conducted to examine a possible relationship between glutamate (GLU) and dopamine (DA) in mediating 50 kHz calls. It was hypothesized that the dopaminergic system plays a mediating role in 50 kHz calls induced by injections ofGLU into the anterior hypothalamic/preoptic area (AHPOA) in adult rats. A total of 68 adult male rats were used in this study. Rats' USV were recorded and analyzed in five experiments that were designed to test the hypothesis: in experiment 1, rats were treated with systemic amphetamine (AMPH) alone; in experiment 2, intra- AHPOA GLU was pretreated with systemic AMPH; in experiment 3, intra-AHPOA GLU was pretreated with intra-AHPOA AMPH; in experiment 4, rats were treated with high and low doses of intra-AHPOA AMPH only; in experiment 5, rats were treated with systemic haloperidol (HAL) as a pretreatment for intra-AHPOA GLU. Analysis of the results indicated that AMPH has a facilitatory effect on 50 kHz USV and that a relationship between DA and GLU in inducing 50 kHz calls does exist. The effect, however, was only observed when DA receptors were antagonized with HAL and was not seen with systemic AMPH pretreatments of intra-AHPOA GLU. The DAGLU relationship at the AHPOA was unclear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Once thought to occur only during specific periods of development, it is now clear that neurogenesis occurs in the rat hippocampus into adulthood. It is wellestablished that stress during adulthood decreases the rate of neurogenesis, but during adolescence, the effects of stress are much less understood. I investigated the effect of short-term or chronic stress during adolescence (daily lhr isolation and change of cage partner from postnatal day (PND) 30-32 or 30-45) on hippocampal neurogenesis. In experiment 1, rats were administered Bromodeoxyuridine (BrdU) daily on PND 30-32, or 46-48, to mark neurogenesis at the beginning of the stressor or after the stressor had ceased, respectively. Neither short-term nor chronic stress had an effect on proliferation or survival (evidenced by BrdU and Doublecortin (Dcx) immunohistochemistry respectively) of cells born at the beginning of the stress procedure. Compared to controls, BrdU-labeling showed chronic stress significantly increased proliferation of cells generated after the stressor had ceased, but survival of new neurons was not supported (Dcx-Iabeling). However, it may be that BrdU injections are inherently stressful. In experiment 2, the stressor (described above) was applied in the absence of BrdU injections. Ki67 (a marker of proliferation) showed that stress transiently increased cell proliferation. Dcx-Iabeling showed that stress also increased neuron survival into adulthood. Labeling with OX.,.42 (a marker of macro phages) suggested that the immune system plays a role in neurogenesis, as stress transiently decreased the number of activated microglia in the hippocampus. It can be concluded that in the adolescent male rat, chronic mild stress increases neurogenesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The production of 50 kHz ultrasonic vocalizations in rats has been associated with both positive social interactions and appetitive behavioural situations. Furthermore, there is significant evidence showing that these vocalizations are controlled by the meso-limbic dopamine system. The purpose of this study was to perform a pharmacological analysis of 50 kHz calls by using dopamine and two dopamine agonists amphetamine and apomorphine, to induce calls. The acoustic parameters of the different call types were compared across each agonist. All three agonists were able to significantly induce more 50 kHz vocalizations compared to the vehicle control. Furthermore, calls elicited by apomorphine had a significantly higher bandwidth compared to those elicited by dopamine and amphetamine. All three agonists also had significantly different pharmacokinetic properties. These observations suggest that the D2 receptor sub-type is involved in the length of call bandwidths.