3 resultados para MOLYBDATE AMMOXIDATION CATALYSTS

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aluminosilicate catalysts containing supported ZnCl2 and metal fluoride salts have been prepared using a sol-gel based route, tested and characterized. The activities of these ZnCl2 + metal fluoride catalysts, while greater than "Clayzic" (ZnCI2 supported on montmorillonite KIO) are not as good as supported ZnCl2 only supported on aluminosilicate. Alumina supports have also been prepared via a sol-gel route using various chemical additives to generate a mesoporous structure, loaded with ZnCl2 and tested for activity. The activities for these alumina-supported catalysts are also significantly higher than that of "Clayzic", an effective Friedel-Crafts catalyst. Characterizations of these two types of catalysts were done by magic angle spinning (MAS) NMR, diffuse reflectance infrared (DRIFT) spectroscopy and additionally for the alumina nitrogen adsorption studies were done. Supported aluminum trichloride was also investigated as an alternative to the traditional use of aluminum trichloride.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of new methodology for the asymmetric synthesis of chiral organic compounds is a major focus in modem organic chemistry. The use of chiral catalysts is replacing chiral auxiliaries as a new tool for synthetic chemists. An efficient chiral catalyst allows for large quantities of optically active product to be obtained on use of relatively small amount of enantiopure material, without the need for the removal and recovery of a chiral auxiliary. Furthermore, the most practical catalytic methods utilize an inexpensive and readily available chiral ligand that can provide high and predictable enantioselectivity across a wide range of substrates. In our project, two type of versatile, upgraded chiral ligands have been designed and synthesized. Their application in Simmons-Smith type cyclopropanation is investigated, and the pleasing results suggest that they are the potential catalytic enantioselective candidates to build C-C bonds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Development of guanidine catalysts is explored through direct iminium chloride and amine coupling, alongside a 2-chloro-l,3-dimethyl-IH-imidazol-:-3-ium chloride (DMC) induced thiourea cyclization. Synthesized achiral catalyst N-(5Hdibenzo[ d,t][1,3]diazepin-6(7H)-ylidene)-3,5-bis(trifluoromethyl) aniline proved unsuccessful towards O-acyl migrations, however successfully catalyzed the vinylogous aldol reaction between dicbloro furanone and benzaldehyde. Incorporating chirality into the guanidine catalyst utilizing a (R)-phenylalaninol auxiliary, generating (R)-2-((5Hdibenzo[ d,t] [1,3 ]diazepin-6(7H)-ylidene ) amino )-3 -phenylpropan-l-ol, demonstrated enantioselectivity for a variety of adducts. Highest enantiomeric excess (ee) was afforded between dibromofuranone and p-chlorobenzaldehyde, affording the syn conformation in 96% ee and the anti in 54% ee, with an overall yield of30%. Attempts to increase asymmetric induction were focused on incorporation of axial chirality to the (R)phenylalaninol catalyst using binaphthyl diamine. Incorporation of (S)-binaphthyl exhibited destructive selectivity, whereas incorporation of (R)-binaphthyl demonstrated no effects on enantioselectivity. Current studies are being directed towards identifying the catalytic properties of asymmetric induction with further studies are being aimed towards increasing enantioselectivity by increasing backbone steric bulk.