5 resultados para MITOCHONDRIAL ELECTRON-TRANSPORT
em Brock University, Canada
Resumo:
The number of P700 (the reaction centre of Photosystem I) converted to P700+, in winter rye, was determined by measuring the absorbance change at 820nm . It was found, with a single turnover flash, that thylakoids isolated from cold grown plants have a 50% greater number of P700 oxidized than thylakoids isolated from warm grown plants. Incubation of thylakoids in the dark at 35 C did not change the number of P700 oxidized. The conversion of P700 to P700+ with a single flash can be compared to a steady state rate of electron transport using a Clark electrode. The results for P700 oxidation using the absorbance change at 820 nm measure effects within the PSI complex whereas the results obtained from a Clark electrode measures steady state electron transport between the cytochrome blf complex and the PSI complex. In contrast to the results for P700 oxidation it was shown, using a Clark electrode, that both thylakoids from cold grown plants and thylakoids incubated at in the dark 35 C exhibited 50% higher rates of electron transport than thylakoids from warm grown plants. The correlation between the higher rate of steady state PSI electron transport observed in thylakoids isolated from cold grown winter rye and number of active PSI reaction centres localizes the site of the increase to the PSI reaction centre. In contrast the lack of correlation after incubation at 35 C indicates the increase in the rate of light saturated electron transport in thylakoids isolated from cold grown plants and thylakoids incubated in the dark at 35 C occur by different mechanisms.
Resumo:
Cytoch ro me c oxidase (ferrocytochrome c : 02 oxidoreductase ; EC 1.9. 3.1) is the terminal enzyme in the mitochondrial electron transport chain, catalyzing the transfer of electrons from ferrocytochrome c to molecular oxygen. The effects of two large amphiphilic molecules .. valinomycin and dibucaine upon the spectra of the isolated enzyme and upon the activity of both isolated enzyme and enzyme in membrane systems are investigated by using spectrophotometric and oxygen electrode techniques. The results show that both valinomycin and dibucaine change the Soret region of the spectrum and cause a partial inhibition in a concentration range higher than that in which they act as ionophores. It is concluded that both valinomycin and dibucain~ binding induce a conformational change of the protein structure which modifies the spectrum of the a3 CUB centre and diminishes the rate of electron transfer between cytochrome a and the binuclear centre.
Resumo:
Cytoch ro me c oxidase (ferrocytochrome c : 02 oxidoreductase ; EC 1.9. 3.1) is the terminal enzyme in the mitochondrial electron transport chain, catalyzing the transfer of electrons from ferrocytochrome c to molecular oxygen. The effects of two large amphiphilic molecules - valinomycin and dibucaine upon the spectra of the isolated enzyme and upon the activity of both isolated enzyme and enzyme in membrane systems are investigated by using spectrophotometric and oxygen electrode techniques. The results show that both valinomycin and dibucaine change the Soret region of the speetrum and cause a partial inhibition in a concentration range higher than that in which they act as ionophores. It is concluded that both valinomycin and dibucaine binding induce a conformational change of the protein structure which modifies the spectrum of the a3 CUB centre and diminishes the rate of electron transfer between cytochrome a and the binuclear centre.
Resumo:
Thylakoid membrane fractions were prepared from specific regions of thylakoid membranes of spinach (Spinacia oleracea). These fractions, which include grana (83), stroma (T3), grana core (8S), margins (Ma) and purified stroma (Y100) were prepared using a non-detergent method including a mild sonication and aqueous two-phase partitioning. The significance of PSlla and PSII~ centres have been described extensively in the literature. Previous work has characterized two types of PSII centres which are proposed to exist in different regions of the thylakoid membrane. a-centres are suggested to aggregate in stacked regions of grana whereas ~-centres are located in unstacked regions of stroma lamellae. The goal of this study is to characterize photosystem II from the isolated membrane vesicles representing different regions of the higher plant thylakoid membrane. The low temperature absorption spectra have been deconvoluted via Gaussian decomposition to estimate the relative sub-components that contribute to each fractions signature absorption spectrum. The relative sizes of the functional PSII antenna and the fluorescence induction kinetics were measured and used to determine the relative contributions of PSlla and PSII~ to each fraction. Picosecond chlorophyll fluorescence decay kinetics were collected for each fraction to characterize and gain insight into excitation energy transfer and primary electron transport in PSlla and PSII~ centres. The results presented here clearly illustrate the widely held notions of PSII/PS·I and PSlIa/PSII~ spatial separation. This study suggests that chlorophyll fluorescence decay lifetimes of PSII~ centres are shorter than those of PSlIa centres and, at FM, the longer lived of the two PSII components renders a larger yield in PSlIa-rich fractions, but smaller in PSIlr3-rich fractions.
Resumo:
The synthesis of 3-ethynylthienyl- (2.07), 3-ethynylterthienyl- (2.19) substituted qsal [qsalH = N-(8-quinolyl)salicylaldimine] and 3,3' -diethynyl-2,2' -bithienyl bridging bisqsal (5.06) ligands are described along with the preparation and characterization of eight cationic iron(III) complexes containing these ligands with a selection of counteranions [(2.07) with: SCN- (2.08), PF6- (2.09), and CI04- (2.10); (2.19) with PF6 - (2.20); (5.06) with: cr (5.07), SeN- (5.08), PF6- (5.09), and CI04- (5.10)]. Spin-crossover is observed in the solid state for (2.08) - (2.10) and (5.07) - (5.10), including a ve ry rare S = 5/2 to 3/2 spin-crossover in complex (2.09). The unusal reduction of complex (2.10) produces a high-spin iron(I1) complex (2.12). Six iron(II) complexes that are derived from thienyl analogues of bispicen [bispicen = bis(2-pyridylmethyl)-diamine] [2,5-thienyl substituents = H- (3.11), Phenyl- (3.12), 2- thienyl (3.13) or N-phenyl-2-pyridinalimine ligands [2,5-phenyl substituents = diphenyl (3.23), di(2-thienyl) (3.24), 4-phenyl substituent = 3-thienyl (3.25)] are reported Complexes (3.11), (3.23) and (3.25) display thermal spin-crossover in the solid state and (3.12) remains high-spin at all temperatures. Complex (3.13) rearranges to form an iron(II) complex (3.14) with temperature dependent magnetic properties be s t described as a one-dimensional ferromagnetic chain, with interchain antiferromagnetic interactions and/or ZFS dominant at low temperatures. Magnetic succeptibility and Mossbauer data for complex (3.24) display a temperature dependent mixture of spin isomers. The preparation and characterization of two cobalt(II) complexes containing 3- ethynylthienyl- (4.04) and 3-ethynylterhienyl- (4.06) substituted bipyridine ligands [(4.05): [Co(dbsqh(4.04)]; (4.07): [Co(dbsq)2(4.06)]] [dbsq = 3,5-dbsq=3,5-di-tert-butylI ,2-semiquinonate] are reported. Complexes (4.05) and (4.07) exhibit thermal valence tautomerism in the solid state and in solution. Self assembly of complex (2.10) into polymeric spheres (6.11) afforded the first spincrossover, polydisperse, micro- to nanoscale material of its kind. . Complexes (2.20), (3.24) and (4.07) also form polymers through electrochemical synthesis to produce hybrid metaUopolymer films (6.12), (6.15) and (6.16), respectively. The films have been characterized by EDX, FT-IR and UV-Vis spectroscopy. Variable-temperature magnetic susceptibility measurements demonstrate that spin lability is operative in the polymers and conductivity measurements confirm the electron transport properties. Polymer (6.15) has a persistent oxidized state that shows a significant decrease in electrical resistance.