4 resultados para MIDBRAIN NEURONS

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adult rats emit 22 kHz ultrasonic alann calls in aversive situations. This type of call IS a component of defensive behaviour and it functions predominantly to warn conspecifics about predators. Production of these calls is dependent on the central cholinergic system. The laterodorsal tegmental nucleus (LDT) and pedunculopontine tegmental nucleus (PPT) contain largely cholinergic neurons, which create a continuous column in the brainstem. The LDT projects to structures in the forebrain, and it has been implicated in the initiation of 22 kHz alarm calls. It was hypothesized that release of acetylcholine from the ascending LDT terminals in mesencephalic and diencephalic areas initiates 22 kHz alarm vocalization. Therefore, the tegmental cholinergic neurons should be more active during emission of alarm calls. The aim of this study was to demonstrate increased activity of LDT cholinergic neurons during emission of 22 kHz calls induced by air puff stimuli. Immunohistochemical staining of the enzyme choline acetyltransferase identified cell bodies of cholinergic neurons, and c-Fos immunolabeling identified active cells. Double labeled cells were regarded as active cholinergic cells. There were significantly more (pneurons in the LDT of vocalizing animals than in the non-vocalizing controls. Such a difference between vocalizing and control animals was not found in the neighbouring PPT nucleus. Results suggest that there are cholinergic and non-cholinergic cells, which are selectively active in the LDT during emission of 22 kHz alarm calls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An ascending cholinergic projection, which originates in the laterodorsal tegmental nucleus (LDT), was implicated in the initiation of ultrasonic vocalization. The goal of this study was to histochemically examine the activity the LDT following ultrasonic calls induced by two methods. It was hypothesized that cholinergic LDT cells would be more active during air puffinduced vocalization than carbachol-induced one. Choline acetyltransferase (ChAT), and cFos protein were visualized histochemically as markers of cholinergic calls and cellular activity, respectively. Results indicated that animals vocalizing after carbachol, but not after air puff, had a significantly higher number of Fos labeled nuclei within the LDT than non vocalizing controls. A significantly higher number of doublelabeled neurons were discovered in the LDT of vocalizing animals (in both groups) as compared to control conditions. Thus, there were significantly more active cholinergic cells in the LDT of vocalizing than non-vocalizing rats for both methods of call induction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increasing the impulse activity of neurons in vivo over 3 or more days causes a reduction in transmitter release that persists for days or weeks (eg. Mercier and Atwood, 1989). This effect is usually accompanied by decreased synaptic fatigue. These two changes involve presynaptic mechanisms and indicate "long-term adaptation" (LTA) of nerve terminals. Previous experiments have shown that LTA requires extracellular calcium and protein synthesis (eg. Hong and Lnenicka, Soc. Neurosci. Abstr. 17:1322) and appears to involve communication between the cell body and the nerve terminals. The present study examines the possibility that the reduction in transmitter release is caused by an -increase in the calcium buffering ability within the nerve terminals. It examines the responses of adapted and control nerve terminals to exogenously applied calcium buffer, BAPTA-AM, which decreases transmitter release (Robitialle and Charlton, 1992). If LTA increases intrinsic Ca2+-buffering, the membrane permeant form of BAPTA should have less effect on adapted nerve terminals than on controls. Experiments are performed on the phasic abdominal extensor motor neurons of the crayfish, Procambarns clarkii. BAPTA-AM decreases excitatory postsynaptic potentials (EPSP's) of the phasic extensor muscles in a dosedependent manner between 5 and 50 JLM. LTA is elicited by in vivo stimulation at 2.5 Hz for 2-4 h per day over 3 days, which reduces EPSP's by over 50%. Experiments indicate that BAPTA-AM produces no significant change in EPSP reduction in adapted neurons when compared to controls. These results do not support the hypothesis that increased daily activity alters rapid intrinsic calcium buffers, that are able to reduce transmitter output in the same manner as BAPTA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinoic acid, a derivative of vitamin A, is known to play diverse roles in development and regeneration. Previous research in the mollusc Lymnaea stagnalis has shown that a gradient of all-trans retinoic acid attracts the growth cones of cultured neurons. The present study investigates the sub-cellular mechanisms within the growth cones of Lymnaea pedal A neurons which mediate the attractive response to a gradient of alltrans retinoic acid. In this study, the mechanism of growth cone turning is shown to be local, as neurites mechanically isolated from their cell body retain the capacity to turn towards an exogenous gradient of all-trans retinoic acid. The turning response is dependent on the initiation of protein synthesis and calcium influx, but does not appear to involve signaling through protein kinase C (PKC). The retinoid X receptor (RXR), which classically functions as a transcription factor, was also shown to be involved in the turning response, functioning locally through a non-genomic pathway. These data show, for the first time in any species, that all-trans retinoic acid's chemotropic action involves a local mechanism involving non-genomic signaling through the RXR. As retinoic acid is known to playa role in regeneration, understanding the mechanisms underlying retinoic acid signaling may lead to further advances in regenerative neuroscience.