2 resultados para Low pressures

em Brock University, Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The kinetic study of the coupled enzymatic reaction involving monomeric yeast hexokinase PII (HK) and yeast glucose-6-phosphate dehydrogenase (G-6-PDH) yields a Michaelis constant of 0.15 ± 0.01 mM for D-glucose. At pH 8.7 HK is present in monomeric form. The addition of polyethylene glycol (PEG), to the reaction mixture increased the affinity of HK for glucose, independent ofMW of the PEG from 2000 to 10000. The osmotic stress exerted by PEG can be used to measure the change in number of water molecules that accompany enzyme conformational changes (Rand, et al., 1993). Results indicate that the G-6-PDH is not osmotically sensitive and thus, the change in the number of PEG-inaccessible water molecules (ANw) measured in the coupled reaction is only the difference between the glucose-bound and glucosefree conformations of HK. ANw ~ 450 with PEGs of MW > 2000 under conditions for both binding (Reid and Rand, 1997) and kinetic assays. The contribution water may play in the binding of ATP (Km = 0.24 + 0.02 mM) has also been examined. It was found that in this case ANw = (for osmotic pressures < 2.8x10* dynes/cm^), suggesting no additional numbers of waters are displaced when ATP binds to HK. Osmotic pressure experiments were also performed with dimeric HK. It was determined that both the monomeric and dimeric forms of HK give the same ANw under low pressures. If this large ANw is due to conformational flexibility, it would appear that the flexibility is not reduced upon dimerization ofthe enzyme.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The fragmentation behavior of aryltin compounds [(p-ThAnis)nSnPh4.n (n=l-4); (p-ThAnis)3SnX (X=C1, Br, I); (o-CH30C6H4)3SnCl; Ph3Sn(o-pyr)] have been studied comparatively under EI and FAB ionization modes. Alkali halides were run under FAB mode. For the aryltin compounds, the effect of ligand type on the spectra have been explored in both EI and FAB modes. The fragmentation mechanisms have been examined with linked scans, such as fragment ion scans (B/E) and parent ion scans (B^/E). Ab Initio molecular orbital calculations were used to determine the structures of the fragments by comparing their relative stabilities. In the EI MS studies, negative ion EI mode has also been used for some of the aryltin compounds, to examine the possible ion molecule reactions under low pressures at 70eV. In the positive ion FAB MS studies, matrix optimization experiments have been carried out. Negative ion FAB experiments of all the compounds have been done in two different ways. Finally, the comparison of the two methods, EI MS and FAB MS, have been made.For alkali halides, the studies focused on the FAB MS behavior under different conditions. The intensities of cluster ions were reported, and the anomalies in the intensity distribution was also discussed.