7 resultados para Longus

em Brock University, Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated the regulation of carbohydrate metabolism and glucose uptake through changes in skeletal muscle cell volume. Using an established invitro isolated whole muscle model, soleus (SOL) and extensor digitorum longus (EDL) muscles were dissected from male rats and incubated in an organ bath containing Sigma medium-199 with 8 mM D-glucose altered to target osmolality (hypo-osmotic: HYPO, iso-osmotic: ISO, hyper-osmotic: HYPER; 190, 290, 400 mmol/kg). Muscles were divided into two groups; metabolite (MM) and uptake (MU). MM (N=48) were incubated for 60 minutes and were then immediately flash frozen. MU (N=24) were incubated for 30 minutes and then the extracellular fluid was exchanged for media containing ^H-glucose and ^'*C-mannitol and incubated for another 30 minutes. After the incubation, the muscles were freeze clamped. Results demonstrated a relative water decrease and increase in HYPER and HYPO, respectively. EDL and SOL glucose uptakes were found to be significantly greater in HYPER conditions. The HYPER condition resulted in significant alterations in muscle metabolite concentrations (lower glycogen, elevated lactate, and G-6-P) suggesting a catabolic cell state, and an increase in glycogen synthase transformation when compared to the HYPO group. In conclusion, skeletal muscle cell volume alters rates of glucose uptake with further alterations in muscle metabolites and glycogen synthase transformation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study investigated the regulation of carbohydrate metabolism through changes in skeletal muscle cell volume immediately post contraction and during recovery. Using an established in vitro isolated muscle strip model, soleus (SOL) and extensor digitorum longus (EDL) were dissected from male rats and incubated in an organ bath (perfused with 95% O2; 5% CO2, pH 7.4, temperature 25°C) containing medium- 199 altered to a target osmotic condition (iso-, hypo- or hyper-osmotic; 290, 1 80, 400 mmol/kg). Muscles were stimulated for 10 minutes (40 Hz SOL; 30 Hz EDL) and then either immediately flash frozen or allowed to recover for 20 minutes before subsequent metabolite and enzyme analysis. Results demonstrated a relative water decrease in HYPER vs. HYPOosmotic condition (n=8/group; p<0.05) regardless of muscle type. Specifically, the SOL HYPER condition had elevated metabolite concentrations after 10 minutes of stimulation in comparison to both HYPO and ISO (p<0.05), while EDL muscle did not show any significant difTerences between the HYPER or HYPO conditions. After 20 minutes of recovery, metabolic changes occurred in both SOL and EDL with the SOL HYPER condition showing greater relative changes in metabolite concentrations versus HYPO. The results of the current study have demonstrated that osmotic imbalance induces metabolic change within the skeletal muscle cell and muscle type may influence the mechanisms utilized for cell volume regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Large forces are the primary mechanism of injury in muscular dystrophy, and muscular dystrophy is especially damaging to type IIB muscle fibers. It was hypothesized that post-tetanic potentiation (PTP) would be down-regulated to prevent damage in Xlinked muscular dystrophy (mdx) mice since PTP increases force and PTP effects are greatest in IIB fibers. PTP experiments were performed on the extensor digitorum longus (EDL) of 50 day old mdx (YM) and C57BL/10 (YC) mice and 10 month old mdx (OM) and C57B1710 (OC) mice. Twitch and tetanic forces were lower in mdx than controls and lower in younger than older mice. Contrary to the hypothesis, PTP was higher in both mdx groups compared to controls. OM potentiated more than any other condition (OM: 29.8%, OC: 23.2%, YM: 21.9%, YC: 17.2%). In accordance with literature PTP increased in the older groups. To explain PTP changes, fiber typing and Western blots for myosin light chain kinase (MLCK) were performed. YM and YC had similar fiber type profiles (2% I, 58% IIX/D and 40% IIB). In accordance with literature but contrary to expected conditions for elevated PTP, OM had a slower fiber type profile (1.7% I, 69% IIX/D and 29% IIB) than OC (0.4% I, 61% IIX/D and 38% IIB). No differences were found in MLCK expression. It seems that PTP is up-regulated to maintain muscle function rather than being down-regulated to prevent muscle damage. Ca""^ transient and myosin phosphorylation measurements would be beneficial in explaining increased PTP seen in this study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Extracellular hyper-osmotic (HYPER) stress increases glucose uptake to defend cell volume, when compared to iso-osmotic (ISO) conditions in skeletal muscle. The purpose of this study was to determine a time course for changes in common signaling proteins involved in glucose uptake during acute hyper-osmotic stress in isolated mammalian skeletal muscle. Rat extensor digitorum longus (EDL) muscles were excised and incubated in a media formulated to mimic ISO (290 ± 10 mmol/kg) or HYPER (400 ± 10 mmol/kg) extracellular condition (Sigma Media-199). Signaling mechanisms were investigated by determining the phosphorylation states of Akt, AMPK, AS160, cPKC and ERK after 30, 45 and 60 minutes of incubation. AS160 was found to be significantly more phosphorylated in HYPER conditions compared to ISO after 30 minutes (p<0.01). It is speculated that AS160 phosphorylation increases glucose transporter 4 (GLUT4) content at the cell surface thereby facilitating an increase in glucose uptake under hyper-osmotic stress.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pyruvate dehydrogenase phosphatase (PDP) regulates carbohydrate oxidation through the pyruvate dehydrogenase (PDH) complex. PDP activates PDH, enabling increased carbohydrate flux towards oxidative energy production. In culture myoblasts, both PDP1 and PDP2 undergo covalent activation in response to insulin–stimulation by protein kinase C delta (PKCδ). Our objective was to examine the effect of insulin on PDP phosphorylation and PDH activation in skeletal muscle. Intact rat extensor digitorum longus muscles were incubated (oxygenated at 25°C, 1g of tension) for 30min in basal or insulin–stimulated (10 mU/mL) media. PDH activity increased 58% following stimulation, (p=0.057, n=11). Serine phosphorylation of PDP1 (p=0.047) and PDP2 (p=0.006) increased by 29% and 48%, respectively (n=8), and mitochondrial PKCδ protein content was enriched by 45% in response to stimulation (p=0.0009, n=8). These data suggest that the insulin–stimulated increase in PDH activity in whole tissue is mediated through mitochondrial migration of PKCδ and subsequent PDP phosphorylation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Activated by elevations in myoplasmic calcium concentration, myosin light chain kinase (skMLCK) phosphorylates the regulatory light chains (RLCs) of fast muscle myosin. This covalent modification potentiates force production, but requires an investment of ATP. Our objective was to investigate the effect of RLC phosphorylation on the contractile economy (mechanical output:metabolic input) of fast twitch skeletal muscle. Extensor digitorum longus muscles isolated from Wildtype and skMLCK-/- mice mounted in vitro (25°C) were subjected to repetitive low-frequency stimulation (10Hz,15s) known to cause activation of skMLCK, and staircase potentiation of force. With a 3-fold increase in RLC phosphate content, Wildtype generated 44% more force than skMLCK-/- muscles over the stimulation period (P = .002), without an accompanied increase in energy cost (P = .449). Overall, the contractile economy of Wildtype muscles, with an intact RLC phosphorylation mechanism, was 73% greater than skMLCK /- muscles (P = .043), demonstrating an important physiological function of skMLCK during repetitive contractile activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Duchenne muscular dystrophy is a X-linked muscle disease, which leads to alterations in membrane phospholipid fatty acid (FA) composition and skeletal muscle damage. Increased membrane saturated FA in muscular dystrophy may suggest its association with increased susceptibility (as being the cause or consequence) to muscle damage. It was hypothesised that increased saturation is positively correlated to increased muscle damage. Correlations were hypothesized to be greater in extensor digitorum longus (EDL) at 20 weeks compared to soleus (SOL) at 10 weeks in dystrophin deficient (mdx) mice. Increased saturation was correlated to damage in EDL at both 10 and 20 weeks, with stronger correlations at 10 weeks. The results suggest that membrane PL FA composition may be associated with damage through two possible means. Increased saturation may be a cause or consequence of membrane damage. Association of membrane composition with eccentric induced damage has underscored the importance of saturated PL FA compositions in damage to dystrophic myofibres.