3 resultados para Locomotion

em Brock University, Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

SUMMARY Background: Age related declines in lower extremity strength have been associated with impaired mobility and changes in gait patterns, which increase the likelihood of falls. Since community dwelling adults encounter a wide range of locomotor challenges including uneven and obstmcted walking surfaces, we examined the effect of a strength 11 and balance exercise program on obstructed walking in postmenopausal women. Objectives: This study examined the effect of a weighted-vest strength and balance exercise program on adaptations of the stance leg during obstacle walking in postmenopausal women. Methods: Eighteen women aged 44-62 years who had not engaged in regular resistance training for the past year were recruited from the St. Catharines community to participate in this study. Eleven women volunteered for an aerobic (walking), strength, and balance training program 3 times per week for 12 weeks while 7 women volunteered as controls. Measurements included: force platform dynamic balance measure of the center of pressure (COP) and ground reaction forces (GRFs) in the stance leg while going over obstacles of different heights (0,5, 10,25 and 30 cm); and isokinetic strength measures of knee and ankle extension and flexion. Results: Of the 18 women, who began the trial, 16 completed it. The EX group showed a significant increase of 40% in ankle plantar flexion strength (P < 0.05). However, no improvements in measures of COP or GRFs were observed for either group. Failure to detect any changes in measures of dynamic balance may be due to small sample size. Conclusions: Postmenopausal women experience significant improvements in ankle strength with 12 weeks of a weighted-vest balance and strength training program, however, these changes do not seem to be associated with any improvement in measures of dynamic balance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most metabolic functions are optimized within a narrow range of body temperatures, which is why thermoregulation is of great importance for the survival and overall fitness of an animal. It has been proposed that lizards will thermoregulate less precisely in low thermal quality environments, where the costs associated with thermoregulation are high; in the case of lizards, whose thermoregulation is mainly behavioural, the primary costs ofthermoregulation are those derived from locomotion. Decreasing thermoregulatory precision in costly situations is a strategy that enhances fitness by allowing lizards to be more flexible to changing environmental conditions. It allows animals to maximize the benefits of maintaining a relatively high body temperature while minimizing energy expenditure. In situations where oxygen concentration is low, the costs of thermoregulation are relatively high (i.e. in relation to the amount of oxygen available for metabolic functions). As a result, it is likely that exposures to hypoxic conditions induce a decrease in the precision of thermoregulation. This study evaluated the effects of hypoxia and low environmental thermal quality, two energetically costly conditions, on the precision and level of thermoregulation in the bearded dragon, Pogona vitticeps, in an electronic temperature-choice shuttle box. Four levels of hypoxia (1O, 7, 5 and 4% 02) were tested. Environmental thermal quality was manipulated by varying the rate of temperature change (oTa) in an electronic temperature-choice shuttle box. Higher oT a's translate into more thermally challenging environments, since under these conditions the animals are forced to move a greater number of times (and hence invest more energy in locomotion) to maintain similar temperatures than at lower oTa's. In addition, lizards were tested in an "extreme temperatures" treatment during which air temperatures of the hot and cold compartments of the shuttle box were maintained at a constant 50 and 15°C respectively. This was considered the most thermally challenging environment. The selected ambient (T a) and internal body temperatures (Tb) of bearded dragons, as well as the thermoregulatory precision (measured by the central 68% ofthe Ta and T b distribution) were evaluated. The thermoregulatory response was similar to both conditions. A significant increase in the size of the Tb range, reflecting a decrease in thermoregulatory precision, and a drop in preferred body temperature of ~2 °C, were observed at both 4% oxygen and at the environment of lowest thermal quality. The present study suggests that in energetically costly situations, such as the ones tested in this study, the bearded dragon reduces energy expenditure by decreasing preferred body temperature and minimizing locomotion, at the expense of precise behavioural thermoregulation. The close similarity of the behavioural thermoregulatory response to two very different stimuli suggests a possible common mechanism and neuronal pathway to the thermoregulatory response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intracerebroventricular (ICV) administration of bombesin (BN) induces a syndrome characterized by stereotypic locomotion and grooming, hyperactivity and sleep elimination, hyperglycemia and hypothermia, hyperhemodynamics, feeding inhibition, and gastrointestinal function changes. Mammalian BN-like peptides (MBNs), e.g. gastrin-releasing peptide (GRP), Neuromedin C (NMC), and Neuromedin B (NMB), have been detected in the central nervous system. Radio-labeled BN binds to specific sites in discrete cerebral regions. Two specific BN receptor subtypes (GRP receptor and NMB receptor) have been identified in numerous brain regions. The quantitative 2-[14C]deoxyglucose ([14C]20G) autoradiographic method was used to map local cerebral glucose utilization (LCGU) in the rat brain following ICV injection of BN (vehicle, BN O.1Jlg, O.5Jlg). At each dose, experiments were conducted in freely moving or restrained conditions to determine whether alterations in cerebral function were the result of BN central administration, or were the result of BN-induced motor stereotypy. The anteroventral thalamic nucleus (AV) (p=O.029), especially its ventrolateral portion (AVVL) (plocomotion.